1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 2 1 TRƯỜNG ĐIỆN TỪ

10 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 156 KB

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India 2.1 The Line Integral 2.1-3 The Line Integral Work done in carrying a charge from A to B in an electric field: B E1 A 1 l1 n E2 2 l2 WAB   dWj j1 2.1-4 dW j qE j cos  j l j  qE j l j cos  j qE j  l j n  WAB q  E j • l j j1 n WAB VAB    E j • l j (Voltage between q A and B) j1 2.1-5 In the limit n   , B VAB   E • dl A = Line integral of E from A to B C E • dl = Line integral of E around the closed path C 2.1-6 A If R C C L B C E • dl = , B then  E • dl A is independent of the path from A to B (conservative field) ARBLA E • dl  ARB E • dl  BLA E • dl  ARB E • dl – ALB E • dl 0 ARB E • dl  ALB E • dl 2.1-7 Ex For F  yza x  zxa y  xya z , find (1,2,3)  F • dl along the straight line paths (0, 0, 0) from (0, 0, 0) to (1, 0, 0), from (1, 0, 0) to (1, 2, 0) and then from (1, 2, 0) to (1, 2, 3) z (0, 0, 0) (1, 0, 0) x (1, 2, 3) y (1, 2, 0) 2.1-8 From (0, 0, 0) to (1, 0, 0), y z 0 ; dy dz 0 F 0 , (1,0,0) (0,0,0) F • dl 0 From (1, 0, 0) to (1, 2, 0), x 1, z 0 ; dx dz 0 F  ya z dl dx a x  dy a y  dz a z dy a y F • dl 0, (1,2,0) (1,0,0) F • dl 0 2.1-9 From (1, 2, 0) to (1, 2, 3), x 1, y 2 ; dx dy 0 F 2za x  za y  2a z , dl dz a z F • dl 2 dz ,  (1,2,3) (1,2,3) (1,2,0) dz 6 (0,0,0) F • dl 0   6 2.1-10   In fact, F  d l  yza x  zxa y  xyaz  dx ax  dy a y  dz az   yz dx  zx dy  xy dz d  xyz  1,2,3  0,0,0  1,2,3 F  d l  0,0,0  1,2,3 0,0,0  d  xyz   xyz  12 3  0 0 6, independent of the path

Ngày đăng: 12/04/2023, 21:00