1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 3 5 TRƯỜNG ĐIỆN TỪ

14 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 328 KB

Nội dung

3 5 Sinusoidally Time Varying Uniform Plane Waves in Free Space Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth[.]

Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India 3.5 Sinusoidally Time-Varying Uniform Plane Waves in Free Space 3.5-3 Sinusoidal Traveling Waves f t  z vp   cos   t  z vp       cos t   z     g t  z v p   cos   t  z vp       cos t   z     where   vp  0 3.5-4 f  z , t   cos t   z   t 4 f t  2 t 0 -1   2  z 3.5-5 g  z , t   cos t   z  t  2 t  4 g t 0 -z 2    -1 3.5-6 For J S t   J S cos t ax for z  0, The solution for the electromagnetic field is 0 J S E cos w t  z vp ax for z 0 J S = cos t   z ax for z JS H  cos  t  z vp a y for z JS  cos t   z a y for z where   w vp  w 0 3.5-7 Parameters and Properties t   z     Phase,     radian frequency = t  rate of change of phase with time for a fixed value of z (movie)  f   frequency 2 = number of 2 radians of phase change per sec 3.5-8   phase constant =  z = magnitude of rate of change of phase with distance z for a fixed value of t (still photograph)  vp  phase velocity =   velocity with which a constant phase progresses along the direction of propagation  follows from d t   z    3.5-9 2  = wavelength =   distance in which the phase changes by 2 for a fixed t Note that  2 f vp    f  2    in m  f in MHz = 300 Ex Ex 0     Hy Hy = Ratio of the amplitude of E to the amplitude of H for either wave 3.5-10 E × H (Poynting Vector, P) ax × a y  az for (+) wave   ax ×  a y  az for (  ) wave is in the direction of propagation x x E E H y P z P y H z 3.5-11 Example: Consider E  37.7 cos 6 108 t  2 z a y V m Then    6 10 , f   108 Hz 2 2   2 ,   1 m  6 108 vp   108 m s 2 Direction of propagation is –z H  0.1 cos 6 108 t  2 z ax A m 3.5-12 Array of Two Infinite Plane Current Sheets JS1 z 0 JS z  J S  J S cos t ax for z 0 J S  J S sin t ax for z  For J S , 0 J S  cos t   z ax for z  E1  0 J S cos t   z a for z  x  3.5-13 For J S , 0 J S      sin  t    z    ax for z       E2  0 J S sin  t    z     a for z     x   4     0 J S     sin  t   z   ax for z      0 J S sin  t   z    a for z     x  2   0 J S  cos t   z ax for z    0 J S cos t   z a for z   x  3.5-14 For both sheets, E = E1  E2  E1    E2  for z   z 0 z     E1 z 0   E2 z  for  z     E1 z 0   E2 z  for z   0 J S cos t   z ax for z    0 J S sin t sin  z ax for  z   0 for z   No radiation to one side of the array “Endfire” radiation pattern

Ngày đăng: 12/04/2023, 21:02

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN