No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]
Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India 1.3 Cylindrical and Spherical Coordinate Systems 1.3-3 Cylindrical and Spherical Coordinate Systems Cylindrical (r, , z) z Spherical (r, , ) z az a 90Þ x x r y z ar a r ar y x Only az is uniform All three unit ar and a are nonuniform vectors are nonuniform 90Þ a y 1.3-4 = r cos = r sin =z x y z D1.7 (a) x = r sin cos y = r sin sin z = r cos (2, 5/6, 3) in cylindrical coordinates z x 5/6 y x 2 cos 5 – 2 y 2 sin 5 61 z 3 1.3-5 (b) (4, 4 3, – 1) in cylindrical coordinates z 4/3 y x x 4 cos 4 – 12 4 y 4 sin 4 – z – 1.3-6 (c) (4, 2 3, 6) in spherical coordinates z 2/3 x y /6 2 x 4 sin cos 3 2 y 4 sin sin 4 z 4 cos – (d) 1.3-7 8, 4, in spherical coordinates z /4 x /3 y x sin cos 1 y sin sin 3 z cos 2 1.3-8 Conversion of vectors between coordinate systems a rc cos sin a x a a –sin cos y a z a z a rs sin cos sin sin a cos cos cos sin cos a – sin a az ay ax arc a az ars arc a cos a x – sin a y a z 1.3-9 P1.18 A = ar at (2, /6, 2) B = a at (1, /3, 0) C = i at (3, /4, 3/2) A z /6 x /2 y A sin a y cos a z 6 ay az 2 1 4 1.3-10 z y B x 1 4 z C /4 3/2 x B sin a x – cos a z 6 ax – az 2 y C a x 1.3-11 1 1 3 (a) A B a y az ax az 2 2 1 (b) A C a y az ax 2 0 1.3-12 1 (c) B C ax a a z x 2 (d) A B • C C • A B = – 3 –