1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 1 7 TRƯỜNG ĐIỆN TỪ

10 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 124 KB

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India 1.7 Lorentz Force Equation 1.7-3 Lorentz Force Equation Fe qE Fm qv × B Fm B F = Fe  Fm F = q E + v × B  For a given B, to find E, F E  – v B q  One force is sufficient q E v Fe 1.7-4 D1.21 B0 B  ax  2a y  2az  Find E for which acceleration experienced by q is zero, for a given v F q E  v × B  0 E =  v × B (a) v = v0 a x  a y  a z  v0 B0 E= ax  a y  a z × a x  2a y  2a z    v0 B0 a y  az  1.7-5  (b) v = v0 2ax  a y  2az  v0 B0 E  2ax  a y  2az × a x  2a y  2az   v0 B0 2ax  2a y  az  (c) v = v0 along y  z 2 x v0   ax  2a y  a z  v0 E   ax  2a y  2a z × a x  2a y  2a z  0 1.7-6 For a given E, to find B, F v B  – E q One force not sufficient Two forces are needed F1 v1 B  – E C1 q F2 v B  – E C2 q C1 × C2 v1 × B × v × B   v1 × B  B  v2  v1 × B  v B =  C1  v2 B 1.7-7 C2 C1 B  C1 • v provided C1 • v2 0, which means v2 and v1 should not be collinear (since C1 • v1 = 0) 1.7-8 P1.54 For v = v1 or v = v2, test charge moves with constant velocity equal to the initial value It is to be shown that for mv1  nv v , where m + n 0, m n the same holds qE  qv1 B 0 (1) qE  qv B 0 (2) qE  qv B 0 (3) 1  3  v1  v × B = 2   3  v2  v × B = 1.7-9 Both  v1  v  and  v2  v  are collinear to B   v1  v  k  v2  v  v1 – kv v 1– k mv1  mv  m n n for k = – m Alternatively, m n (1)   (2)   mn mn 1.7-10 mv1  nv  qE  q  B 0  m  n  mv1  nv v  mn

Ngày đăng: 12/04/2023, 21:00