1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 1 4 TRƯỜNG ĐIỆN TỪ

12 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 156 KB

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India 1.4 Scalar and Vector Fields 1.4-3 FIELD is a description of how a physical quantity varies from one point to another in the region of the field (and with time) (a) Scalar fields Ex: Depth of a lake, d(x, y) Temperature in a room, T(x, y, z) Depicted graphically by constant magnitude contours or surfaces y d3 d1 d2 x 1.4-4 (b) Vector Fields Ex: Velocity of points on a rotating disk v(x, y) = vx(x, y)ax + vy(x, y)ay Force field in three dimensions F(x, y, z) = Fx(x, y, z)ax + Fy(x, y, z)ay + Fz(x, y, z)az Depicted graphically by constant magnitude contours or surfaces, and direction lines (or stream lines) 1.4-5 Example: Linear velocity vector field of points on a rotating disk 1.4-6 (c) Static Fields Fields not varying with time (d) Dynamic Fields Fields varying with time Ex: Temperature in a room, T(x, y, z; t) 1.4-7 D1.10 T(x, y, z, t) 2 = To  x 1  sin  t    y 1  cos  t   z   2  (a) T  x, y, z ,  T0  x 1     y 1  1  z T0  x  z  Constant temperature surfaces are elliptic cylinders, x  z const    1.4-8  (b) T  x, y, z , 0.5  T0 x 1 1   y 1    z 2 T0 4 x  y  z   Constant temperature surfaces are spheres, x  y  z   const  2 (c) T  x, y, z , 1 T0  x 1     y 1 1  z T0  x  16 y  z  Constant temperature surfaces are ellipsoids, x  16 y  z   const  1.4-9 Procedure for finding the Equation for the Direction Lines of a Vector Field dl F dl The field F is tangential to the direction line at all points on a direction line F F ax dl F  dx Fx ay dy Fy az dz 0 Fz dx dy dz   Fx Fy Fz 1.4-10 Similarly dr r d dz   Fr F Fz cylindrical dr r d r sin  d   Fr F F spherical 1.4-11 P1.26 (b)xa x  ya y  za z (Position vector) dx dy dz   x y z ln x ln y  ln C1 ln z  ln C2 ln x ln C1 y ln C2 z x C1 y C2 z 1.4-12  Direction lines are straight lines emanating radially from the origin For the line passing through (1, 2, 3), C1 (2) C2 (3) 1  C1  , C2  y z x  or, 6x 3y 2z

Ngày đăng: 12/04/2023, 21:00