1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 6 4 TRƯỜNG ĐIỆN TỪ

12 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 250 KB

Nội dung

No Slide Title Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jor[.]

Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India 6.4 Lines with ReactiveTerminations and Discontinuities 6.4-3 Line Terminated by an Inductor S Z0 V0 t = T+ IL t=0 z=0 Z0 , T IL 0   0 L z =l V0 V – – 2Z0 Z0 + V0 + V– – L 6.4-4  V0 V   V0   0  V     t T   Z0 Z0  t T  I.C –  V0  V d V  V –  L  –  B.C dt 2 Z0 Z0  L dV   V   V0 Z0 dt Using I.C., V0  T V  L V   Ae Z  0T V0 V0   Ae L 2 6.4-5 Z0 T A V0 e L Z0 – (t – T ) V V – (l,t)  –  V0 e L t T – (l, t) V I – (l, t) – Z0 Z0 – (t – T ) V0 V0  – e L 2Z0 Z0 t T 6.4-6 Voltage =0 T T 2T (+) 3T (–) 3T (–) V 0/2 –V0/2 2T z V0 VL (+) V /2 –V 0/2 6.4-7 – = 0 T T –V 0/2Z0 2T 2T –V0/2Z0 (–) V0/2Z0 IL 3T 3T (+) (+) z l (–) V 0/2Z0 V0 Z0 6.4-8 V0/2 V V0 V V0/2 t = T/2 l/2 l/2 (+) (–) l t = 3T/2 l V V0/2 z t = 5T/2 (+) (–) z l z 6.4-9 V0/2Z0 I I t = T/2 (+) V0/2Z0 l/2 I t = 3T/2 l (–) (+) l/2 z t = 5T/2 V 0/2Z0 z l l/2 (–) l z 6.4-10 Line Terminated by a Capacitor S Z0 V0 t = T+ t=0 z=0 + Z0 , T VL (0–) 0 VL – z =l V0 V – – 2Z0 Z0 + V0 + V– – C 6.4-11 V0 V  d  V0    C   V  B.C Z0 Z0 dt   V0  V0   0  V    V  t T    t T  dV – V0 – CZ0 V  dt – t V V–   Ae CZ0 I.C 6.4-12 Using I.C., T V0 V0 –   Ae CZ0 – 2 – T A – V0 e CZ0 – (t – T ) V V – (l,t)  – V0 e CZ0 t>T – (l, t) V I – (l, t)  – Z0 V0 V0 – CZ (t – T ) –  e Z0 Z0 t>T

Ngày đăng: 12/04/2023, 21:01