1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Section 4 2 TRƯỜNG ĐIỆN TỪ

15 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 426 KB

Nội dung

4 2 Dielectrics Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jo[.]

Slide Presentations for ECE 329, Introduction to Electromagnetic Fields, to supplement “Elements of Engineering Electromagnetics, Sixth Edition” by Nannapaneni Narayana Rao Edward C Jordan Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, Urbana, Illinois, USA Distinguished Amrita Professor of Engineering Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India 4.2 Dielectrics 4.2-3 Dielectrics are based upon the property of polarization, which is the phenomenon of the creation of electric dipoles within the material Electronic polarization: (bound electrons are displaced to form a dipole) E + - Q + d -Q - Dipole moment p = Qd 4.2-4 Orientational polarization: (Already existing dipoles are acted upon by a torque) QE + q d q - E Torque  QEd sin  Direction into the paper  T  Qd × E p × E - QE Ionic polarization: (separation of positive and negative ions in molecules) 4.2-5 The phenomenon of polarization results in a polarization charge in the material which produces a secondary E - rS0 z=d - - - - - - - + + + - Ea e   e z=0 + + + + rS0 z=d z=0 + - + - + + - + + + - +  pS   pS + + + + - + + + - + ES -  pS   pS + - + + - + + + - t + + E+ + + 4.2-6 Polarization Current 4.2-7 To take into account the effect of polarization, we define the displacement flux density vector, D, as D  0E  P =  E   e E =  1  e  E = 0 r E =  E C m2  = permittivity, F m  r = relative permittivity  r and  vary with the material, implicitly taking into account the effect of polarization 4.2-8 As an example, consider  S - - - - - - - z=d z  + + + + S + Then, inside the material, + + z=0 S  S E az   a z  2 2 S  az  D   E  S a z 4.2-9 D4.3  1 C m2 - - - - - - - z=d z   4 + + + + + + 1 C m2 For < z < d, 6 (a) D  S 0az 10 a z C m + z=0 4.2-10 D 6 (b) E   10 az    4 36 6   10 az 9 10  9000 az V m (c) P  D   E = 10 az  0.25 10 az  0.75 10 az C m2 4.2-11 Isotropic Dielectrics: D is parallel to E for all E y Dx   Ex D Dy   Ey Dz   Ez D  E E x Anisotropic Dielectrics: D is not parallel to E in general Only for certain directions (or polarizations) of E is D parallel to E These are known as characteristic polarizations 4.2-12 Dx   xx Ex   xy Ey   xz Ez Dy   yx Ex   yy Ey   yz Ez Dz   zx Ex   zy Ey   zz Ez y E D x  Dx    xx  D    y   yx  Dz    zx   xy  xz   Ex     yy  yz   Ey   zy  zz   Ez  4.2-13 D4.4  0     0  0  (a) E  E0 az  Dx   0      D    0      0  y       Dz   0   E0   9  D  9 E0 az  9 E  eff  9 ,  reff  4.2-14  (b) E  E0 a x  2a y   Dx     E0   E0     0   E     8E  D   0 0  y       Dz   0      D  4 E0 ax  2a y   4 E  eff  4 ,  reff  4.2-15  (c) E  E0 2ax  a y   Dx     E0   18 E0   D    0  E    E  0  y     0  Dz   0      D  9 E0 2ax  a y   9 E  eff  9 ,  reff 

Ngày đăng: 12/04/2023, 21:03