Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3 2 , ((ℵ) có[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A B √ C 3π D 3π 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Bất đẳng thức sau đúng? A 3−e > 2−e C 3π < 2π √ √ e π B ( √3 − 1) < ( √3 − 1) π e D ( + 1) > ( + 1) Câu R3 Công thức sai? A R sin x = − cos x + C C e x = e x + C R B R cos x = sin x + C D a x = a x ln a + C Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 6πR3 C 4πR3 D 2πR3 Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? D ∀m ∈ R A < m , B −4 < m < C m < Câu Hàm số sau khơng có cực trị? A y = x4 + 3x2 + B y = cos x C y = x D y = x3 − 6x2 + 12x − Câu Kết đúng? R sin3 x + C A sin2 x cos x = − R C sin2 x cos x = cos2 x sin x + C B R + 2x x+1 sin2 x cos x = −cos2 x sin x + C sin3 x + C Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 5; 0) C (0; 1; 0) D (0; 0; 5) x−2 y x−1 = = điểm Câu Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B ( ; − ; ) C ( ; − ; ) D (2 ; −3 ; 1) 3 3 3 3 Câu 10 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A B C −2 D −1 D R sin2 x cos x = Câu 11 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A 5x5 + sin x + C B 5x5 − sin x + C C x5 − sin x + C D x5 + sin x + C Câu 12 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Trang 1/5 Mã đề 001 Câu 13 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho a3 2a3 D A 6a3 B 2a3 C 3 ′ ′ ′ Câu 14 Cho khối lăng trụ đứng ABC.A B C √ có đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 B C D A 6 Câu 15 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 20 B 13 C 18 D 17 Câu 16 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) cắt mặt cầu (S ) B (P) không cắt mặt cầu (S ) C (P) tiếp xúc mặt cầu (S ) D (P) qua tâm mặt cầu (S ) − 2i (1 − i)(2 + i) + Câu 17 Phần thực số phức z = 2−i + 3i 29 11 11 29 A − B − C D 13 13 13 13 Câu 18 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −9 B 10 C D −10 Câu 19 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 + i B z = + i C z = −3 − i D z = − i Câu 20 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B P(−2; 3) C N(2; 3) D M(2; −3) Câu 21 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = C A = 2ki D A = (1 + i)(2 + i) (1 − i)(2 − i) Câu 22 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z số ảo B |z| = C z = D z = z z (1 + i)2017 Câu 23 Số phức z = có phần thực phần ảo đơn vị? 21008 i A B C 21008 D Câu 24 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 25 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = 2i D P = Câu 26 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16 16π 16 A B C D 15 9 15 Trang 2/5 Mã đề 001 Câu 27 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (2; +∞) B (1; +∞) C (−∞; 1) D (1; 2) ax + b có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (−2; 0) B (0; −2) C (2; 0) Câu 28 Cho hàm số y = D (0; 2) Câu 29 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d = C d > R D d = R R dx = F(x) + C Khẳng định đúng? Câu 30 Cho x 1 A F ′ (x) = B F ′ (x) = − C F ′ (x) = D F ′ (x) = lnx x x x Câu 31 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n2 = (1; −1; 1) B → n4 = (1; 1; −1) C → n3 = (1; 1; 1) D → n1 = (−1; 1; 1) Câu 32 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 33 Tập nghiệm bất phương trình x+1 < A (−∞; 1] B (1; +∞) C (−∞; 1) Câu 34 Cho số phức z thỏa mãn z số thực ω = biểu thức √ M = |z + − i| √ B A 2 D [1; +∞) z số thực Giá trị lớn + z2 C Câu 35 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D D Câu 36 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = −2016 B P = C P = 2016 D max T = √ 2 Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A √ B C D 2 Trang 3/5 Mã đề 001 √ điểm A hình vẽ bên điểm Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm P Câu 41 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 42 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ √ 85 97 B T = 13 D T = 13 A T = C T = 3 Câu 43 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(−1; 2; −3); R = B I(1; 2; −3); R = C I(1; −2; 3); R = D I(1; 2; 3); R = x+1 (C) có đường tiệm cận x−2 B y = x = C y = −1 x = Câu 44 Đồ thị hàm số y = A y = x = D y = x = −1 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(5; 5; 0) B M(−2; −6; 4) C M(2; −6; 4) D M(−2; 6; −4) Câu 46 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A [−3; 3] B (−∞; −3] ∪ [3; +∞) C (−∞; 3] D (0; 3] Câu 47 Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số nguyên dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 48 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x + C B cos 3xdx = sin 3x + C A cos 3xdx = − R R sin 3x C cos 3xdx = + C D cos 3xdx = sin 3x + C Câu 49 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = 2a B V = C V = 3a3 D V = a3 Câu 50 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = B S = C S = −6 D S = −5 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001