Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) x2 + y2 + z2 − 4z −[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ A R = 21 B R = C R = 29 D R = Câu Cho hình S ABCcó cạnh đáy a cạnh bên √ b Thể tích khối chóp là: √ chóp 2 a 3b2 − a2 3ab B VS ABC = A VS ABC = 12 q 12 √ √ a2 b2 − 3a2 3a b D VS ABC = C VS ABC = 12 12 Câu R3 Công thức sai? R A R sin x = − cos x + C B R a x = a x ln a + C C e x = e x + C D cos x = sin x + C ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ac < B ad > C bc > D ab < p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếux = y = −3 Rm dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + m+2 m+1 m+2 2m + A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+1 m+2 2m + m+2 √ ′ ′ ′ ′ Câu Cho lăng trụ ABC.A B C có đáy a, AA = 3a Thể tích khối lăng trụ cho là: √ √ B 3a3 C 3a3 D a3 A 3a3 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m < C m > D m ≤ Câu Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −2 B −8 C −6 D −4 Câu 10 Tính đạo hàm hàm số y = x 5x D y′ = x ln ln Câu 11 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 √ √ a Câu 12 Cho hình chóp S ABCD có cạnh đáy a đường cao S H Tính góc mặt bên (S DC) mặt đáy A 30o B 60o C 90o D 45o A y′ = x B y′ = x.5 x−1 C y′ = Trang 1/5 Mã đề 001 Câu 13 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A 2022 B C D − → Câu 14 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − A 90◦ B 30◦ C 45◦ D 60◦ Câu 15 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; −2; −1) −n = (1; 3; −2) −n = (1; 2; 3) −n = (1; −2; 3) A → B → C → D → − Câu 16 Đạo hàm hàm số y = (2x + 1) tập xác định − − A (2x + 1) ln(2x + 1) B − (2x + 1) − − C − (2x + 1) D 2(2x + 1) ln(2x + 1) 25 1 Câu 17 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 17 B −17 C −31 D 31 2017 (1 + i) Câu 18 Số phức z = có phần thực phần ảo đơn vị? 21008 i 1008 A B C D Câu 19 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2k B A = C A = D A = 2ki Câu 20 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A M(2; −3) B N(2; 3) C P(−2; 3) D Q(−2; −3) Câu 21 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 22 Với số phức z, ta có |z + 1|2 A z · z + z + z + B |z|2 + 2|z| + C z + z + D z2 + 2z + Câu 23 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực là−3 phần ảo −2i C Phần thực phần ảo 2i D Phần thực −3 phần ảo là−2 (1 + i)(2 − i) Câu 24 Mô-đun số phức z = √ √ + 3i A |z| = B |z| = C |z| = D |z| = !2016 !2018 1+i 1−i Câu 25 Số phức z = + 1−i 1+i A + i B C D −2 Câu 26 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B C D 12 Câu 27 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (1; 0) C (1; 2) D (0; 1) Trang 2/5 Mã đề 001 2x + Câu 28 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 2 A y = − B y = − C y = D y = 3 3 Câu 29 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16 16π 16π B C D A 15 15 9 Câu 30 Đồ thị hàm số có dạng đường cong hình bên? x−3 A y = B y = x3 − 3x − C y = x2 − 4x + D y = x4 − 3x2 + x−1 Câu 31 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 A a B a C a D 2a3 Câu 32 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = B y′ = C y′ = D y′ = − x xln3 x xln3 Câu 33 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 A B C D 35 35 35 Câu 34 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = −2016 C P = D P = 2016 Câu 35 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i C |z| = D |z| = A |z| = B |z| = √ Câu 36 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B a + b + c 2 C a + b + c + ab + bc + ca D Câu 37 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 z số thực Tính giá trị biểu Câu 38 Cho số phức z , cho z số thực w = + z2 |z| thức bằng? + |z|2 √ 1 A B C D Câu 39 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D √ Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Trang 3/5 Mã đề 001 Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm Q Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C √ D 2 √ √ √ 42 √ Câu 42 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 x+1 (C) có đường tiệm cận x−2 B y = −1 x = C y = x = Câu 43 Đồ thị hàm số y = A y = x = D y = x = −1 Câu 44 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B m > C −1 ≤ m < D m < −1 √ Câu 45 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ B d = a C d = 2a D d = a A d = a Câu 46 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 A B C −16 D 16 Câu 47 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = B V = 2a3 C V = a3 D V = 3a3 Câu 48 Với a số thực dương tùy ý, log5 (5a) A + log5 a B + log5 a C − log5 a Câu 49 Biết R3 A f (x)dx = R3 g(x)dx = Khi B −2 R3 D − log5 a [ f (x) + g(x)]dx C Câu 50 Tìm đạo hàm hàm số: y = (x2 + 1) 1 3 − A (2x) B (x + 1) C x 2 D D 3x(x2 + 1) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001