Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = x x2 + 1 trên tập xác định của nó là A m[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = − B y = C y = −1 D y = R R R R 2 Câu Hàm số sau khơng có cực trị? A y = cos x C y = x3 − 6x2 + 12x − B y = x4 + 3x2 + D y = x2 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = C m = 13 D m = −15 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = x3 − 2x2 + 3x + x−1 C y = sin x D y = tan x Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ B m ∈ (−1; 2) C m ∈ (0; 2) D m ≥ A −1 < m < Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = +1− B y = + ln ln 5 ln x x C y = −1+ D y = − ln ln 5 ln ln Câu R7 Công thức sai? R A R e x = e x + C B R sin x = − cos x + C C a x = a x ln a + C D cos x = sin x + C Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (−2; 1; 2) C (2; −1; 2) D (2; −1; −2) Câu Cân phân công ban tư môt tô 10 ban đê lam trưc nhât Hoi co cach phân công khac A A310 B 310 C 103 D C10 Câu 10 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −7 B C D −1 Câu 11 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 6a3 B 6a2 C 2a3 D a3 Câu 12 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A K(3; 0; 15) B J(−3; 2; 7) C I(−1; −2; 3) D H(−2; −1; 3) Trang 1/5 Mã đề 001 Câu 13 Tính đạo hàm hàm số y = x 5x ln Câu 14 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = + t B x = + ty = tz = − t C x = + 2ty = 2tz = + t D x = − ty = tz = + t A y′ = x.5 x−1 B y′ = x ln Câu 15 Cho hàm số f (x) liên tục R C y′ = x R2 ( f (x) + 2x) = Tính A −1 B D y′ = R2 f (x) C D −9 y−6 z+2 x−2 = = Câu 16 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ B √ C √ D √ A 10 10 53 Câu 17 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi √ mơ-đun số phức w = 6z − 25i B 13 C 29 D A Câu 18 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A N(2; 3) B P(−2; 3) C Q(−2; −3) D M(2; −3) Câu 19 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực phần ảo 2i C Phần thực −3 phần ảo là−2 D Phần thực là−3 phần ảo −2i Câu 20 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 i B (1 + i)2018 = 21009 i C (1 + i)2018 = 21009 D (1 + i)2018 = −21009 Câu 21 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −9 B C −10 D 10 − 2i (1 − i)(2 + i) Câu 22 Phần thực số phức z = + 2−i + 3i 11 11 29 29 A B − C D − 13 13 13 13 Câu 23 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i) = − 17i Khi hiệu phần thực phần ảo z A B C −7 D −3 Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B 11 + 2i C −3 + 2i 2017 + 2i + i Câu 25 Số phức z = có tổng phần thực phần ảo 2−i A B C -1 D −3 − 10i D Câu 26 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 27 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = sinx + + C B f (x) = −sinx + x2 + C R R x2 C f (x) = −sinx + + C D f (x) = sinx + x2 + C Trang 2/5 Mã đề 001 Câu 28 Phần ảo số phức z = − 3i A −2 B −3 C D Câu 29 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n4 = (1; 1; −1) B → n2 = (1; −1; 1) C → n3 = (1; 1; 1) D → n1 = (−1; 1; 1) Câu 30 Cho số phức z = + 9i, phần thực số phức z2 A 36 B −77 C 85 D Câu 31 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = xπ−1 C y′ = xπ−1 D y′ = πxπ−1 π Câu 32 Với a số thực dương tùy ý, ln(3a) − ln(2a) B lna C ln(6a2 ) D ln A ln 2x + Câu 33 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 2 1 A y = − B y = C y = − D y = 3 3 z+1 số ảo Tìm |z| ? Câu 34 Cho số phức z , thỏa mãn z−1 A |z| = B |z| = C |z| = D |z| = Câu 35 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = C A = −1 D A = Câu 36 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 9 B ; C ; D 0; A ; +∞ 4 4 √ √ √ 42 √ Câu 37 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = |z|2 − C P = (|z| − 2)2 D P = (|z| − 4)2 Câu 39 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 97 85 A T = 13 D T = B T = 13 C T = 3 Câu 40 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Câu 41 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 42 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A P = −2016 B max T = C P = D P = 2016 Câu 43 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C D Trang 3/5 Mã đề 001 Câu 44 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng A 21 B 209 210 C 105 D Câu 45 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị 210 R3 [1 + f (x)]dx A 26 B 10 C 32 D Câu 46 Biết phương trình log22 x − 7log2 x + = có nghiệm x1 , x2 Giá trị x1 x2 A 512 B C 64 D 128 Câu 47 Tập nghiệm bất phương trình log3 (36 − x2 ) ≥ A [−3; 3] B (−∞; −3] ∪ [3; +∞) C (0; 3] D (−∞; 3] Câu 48 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, π R4 f (x) A π2 + 15π 16 B π2 + 16π − 16 C π2 + 16π − 16 16 D π2 − 16 Câu 49 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 84 B S = 96 C S = 1979 D S = 364 Câu 50 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; 2) B M(−5; −2) C M(5; −2) D M(−2; 5) Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001