Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cá[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 2a 5a 3a C √ A √ B D 5 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → → − → − −u | = −u | = √3 A | u | = B | u | = C |→ D |→ Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m ≥ e−2 B m > 2e C m > e2 D m > Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x2 − 2x + C y = −x4 + 3x2 − D y = x3 − 2x2 + 3x + , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π B 3π C D √ A 3π 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m > C m ≤ D m < √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H3) C (H4) D (H1) Câu Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A B 2022 C D x−2 y−6 z+2 Câu 10 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ A √ B 10 C √ D √ 10 53 Câu 11 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A B −1 C −2 D x−2 y x−1 Câu 12 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 5 A ( ; − ; ) B ( ; − ; ) C (2 ; −3 ; 1) D ( ; − ; ) 3 3 3 3 Trang 1/5 Mã đề 001 R Câu 13 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x B f (x) = cos 3x C f (x) = − D f (x) = −3 cos 3x A f (x) = 3 − Câu 14 Đạo hàm hàm số y = (2x + 1) tập xác định − − A − (2x + 1) B 2(2x + 1) ln(2x + 1) − − C − (2x + 1) D (2x + 1) ln(2x + 1) Câu 15 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 3; −2) −n = (1; −2; 3) −n = (1; −2; −1) −n = (1; 2; 3) A → B → C → D → Câu 16 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 22π 512π 7π B V = C V = D V = A V = 15 Câu 17 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực −3 phần ảo là−2 C Phần thực phần ảo 2i D Phần thực là3 phần ảo 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 18 Cho số phức z thỏa mãn (2 + i)z + 1+i A B C 13 D − 2i (1 − i)(2 + i) Câu 19 Phần thực số phức z = + 2−i + 3i 11 29 11 29 A B − C − D 13 13 13 13 2017 + 2i + i Câu 20 Số phức z = có tổng phần thực phần ảo 2−i A B -1 C D Câu 21 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B 21008 C −22016 D −21008 Câu 22 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A 10 B −10 C D −9 Câu 23 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B |z2 | = |z|2 C z + z = 2bi D z − z = 2a !2016 !2018 1+i 1−i Câu 24 Số phức z = + 1−i 1+i A B + i C −2 D Câu 25 Với số phức z, ta có |z + 1|2 B |z|2 + 2|z| + A z · z + z + z + C z + z + D z2 + 2z + Câu 26 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (1; +∞) C (1; 2) D (2; +∞) Câu 27 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d > R C d = D d = R Trang 2/5 Mã đề 001 Câu 28 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 90 B 89 C 48 D 49 Câu 29 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B −1 C D Câu 30 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; −2; −3) B (−1; 2; 3) C (1; 2; −3) D (1; −2; 3) x−1 y−2 z+3 Câu 31 Trong không gian Oxyz, cho đường thẳng d : = = Điểm thuộc −1 −2 d? A M(2; −1; −2) B P(1; 2; 3) C Q(1; 2; −3) D N(2; 1; 2) Câu 32 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n3 = (1; 1; 1) B → n2 = (1; −1; 1) C → n1 = (−1; 1; 1) D → n4 = (1; 1; −1) Câu 33 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (7; 6) C (6; 7) D (−6; 7) √ Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 35 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 √ Câu 36 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| > B |z| < C ≤ |z| ≤ D < |z| < 2 2 Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! ! sau đây? ! 9 A ; B 0; C ; +∞ D ; 4 4 √ Câu 38 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B a + b + c C D a2 + b2 + c2 + ab + bc + ca + z + z2 số thực Câu 39 Cho số phức z (không phải số thực, số ảo) thỏa mãn − z + z2 Khi mệnh đề sau đúng? 3 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ A B C D √ 2 Trang 3/5 Mã đề 001 Câu 41 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm Q C điểm P D điểm S Câu 42 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = D A = + i Câu 43 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A B C Vô số D Câu 44 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; 2; −3); R = B I(1; 2; 3); R = C I(−1; 2; −3); R = D I(1; −2; 3); R = Câu 45 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (−2; 3; 1) −n = (2; −3; 4) −n = (2; 3; −4) A → B → C → D → Câu 46 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 1 B C D A 21 105 210 210 Câu 47 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x A cos 3xdx = sin 3x + C B cos 3xdx = − + C R R sin 3x C cos 3xdx = sin 3x + C D cos 3xdx = + C Câu 48 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 1979 B S = 96 C S = 364 D S = 84 Câu 49 Biết R3 f (x)dx = g(x)dx = Khi 2 A R3 B −2 R3 [ f (x) + g(x)]dx C D Câu 50 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, π R4 f (x) A π2 − 16 B π2 + 15π 16 C π2 + 16π − 16 D π2 + 16π − 16 16 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001