Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằn[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B 6πR3 C πR3 D 4πR3 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Hình nón có bán kính đáy √ R, đường sinh l diện√tích xung quanh A πRl B π l2 − R2 C 2π l2 − R2 D 2πRl Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường tròn C Đường hypebol D Đường parabol Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = − 4t B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + ty = + 2tz = , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π C 3π A 3π B √ D 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Trong khơng gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (−2; 1; 2) C (2; −1; −2) D (2; −1; 2) √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H1) C (H2) D (H3) Câu Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B −3 C −2 D √ Câu 10 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 7; 3, 9)· B (3, 1; 3, 3)· C (3, 3; 3, 5)· D (3, 5; 3, 7)· Câu 11 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A 2022 B C D R2 R2 Câu 12 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A B C −1 D −9 Câu 13 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A 2a B a C D 2 Trang 1/5 Mã đề 001 Câu 14 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A P(4 ; −1 ; 3) B N(1 ; ; 7) C Q(4 ; ; 2) D M(0 ; ; 2) Câu 15 Tính đạo hàm hàm số y = x A y = ′ x B y = x.5 ′ x−1 5x C y = ln ′ Câu 16 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A a3 B 6a3 C 6a2 D y′ = x ln D 2a3 Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 18 Cho hai √ số phức z1 = + i z2 = − 3i Tính mơ-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 Câu 19 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi mơ-đun số phức√w = 6z − 25i A B 13 C D 29 √ Câu 20 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B −1 ≤ m ≤ C m ≥ m ≤ D ≤ m ≤ Câu 21 2i, z2 = − i Giá trị biểu √ thức |z1 + z1 z2 | √ √ Cho số phức z1 = + √ B 10 C 10 D 30 A 130 2(1 + 2i) Câu 22 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C 13 D Câu 23 Tính √ mơ-đun số phức z thỏa mãn z(2 − i) + 13i = √ 34 A |z| = B |z| = 34 C |z| = 34 √ D |z| = 34 Câu 24 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −9 C −10 D 10 + 2i + i2017 Câu 25 Số phức z = có tổng phần thực phần ảo 2−i A B C -1 D x−2 y−1 z−1 Câu 26 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 2 Câu 27 Trong không gian Oxyz, cho mặt cầu (S ) : x + y + z − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−1; −2; −3) B (2; 4; 6) C (1; 2; 3) D (−2; −4; −6) Câu 28 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (−∞; 1) C (0; 2) D (3; +∞) Câu 29 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A B 12 C 11 D Trang 2/5 Mã đề 001 Câu 30 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A 15 B C D 17 Câu 31 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 30◦ C 90◦ D 45◦ Câu 32 Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (12; +∞) C (−∞; 3) D (2; 3) 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A D B C 24 √ √ √ 42 √ Câu 34 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 A ; B ; +∞ C ; D 0; 4 4 Câu 33 Cho khối nón có đỉnh S , chiều cao thể tích Câu 36 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 15 B C 10 D 2z − i Câu 37 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| > B |A| ≤ C |A| < D |A| ≥ z Câu 38 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B C 2 D √ Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm N Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 4)2 C P = |z|2 − D P = (|z| − 2)2 Câu 41 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z √2 | √ √ A P = + B P = 26 C P = 34 + D P = Trang 3/5 Mã đề 001 Câu 43 Với a số thực dương tùy ý, log5 (5a) A + log5 a B − log5 a C + log5 a D − log5 a Câu 44 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A x = B M(−2; −4) C M(1; −2) D x = −2 √ Câu 45 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ A d = 2a B d = a C d = a D d = a Câu 46 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n A B C −1 16 D −16 √ Câu 47 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: A (x + 4)2 + (y − 8)2 = 20 √ C (x − 4)2 + (y + 8)2 = B (x − 4)2 + (y + 8)2 = 20 √ D (x + 4)2 + (y − 8)2 = Câu 48 Tìm nguyên hàm hàm số f (x) = cos 3x sin 3x + C A R cos 3xdx = C R cos 3xdx = − sin 3x + C B R cos 3xdx = sin 3x + C D R cos 3xdx = sin 3x + C Câu 49 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng A 21 Câu 50 Biết B R3 A 209 210 f (x)dx = R3 B C g(x)dx = Khi R3 210 D 105 [ f (x) + g(x)]dx C D −2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001