1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Công thức tổng hợp về dao động điều hoà

38 1,1K 3

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 38
Dung lượng 0,99 MB

Nội dung

Biên soạn: Nguyễn Ngọc Thạnh Phần 1: MỘT SỐ DẠNG TOÁN VỀ DAO ĐỘNG ĐIỀU HÒA 1. Kiến thức nền tảng: - Quãng đường mà vật đi được trong 1 chu kỳ dao động là S = 4A. - Quãng đường mà vật đi được trong chu kỳ dao động là S = 2A. - Quãng đường mà vật đi được trong chu kỳ dao động là S = A. - Chiều dài quỹ đạo: 2A. 2. Mối liên hệ giữa dao động điều hòa và hình chiếu của chuyển động tròn đều. Xét một vật chuyển động tròn đều trên đường tròn có bán kính A và tốc độ góc là ω. Tại thời điểm ban đầu chất điểm ở vị trí điểm M 0 và tạo với trục ngang một góc φ. Tại thời điểm t chất điểm ở vị trí điểm M và góc tạo với trục ngang là (ωt + φ). Khi đó hình chiếu của điểm M xuống Trục ngang là OP có độ dài đại số . Khi đó ta nói hình chiếu của một chất điểm chuyển động tròn đều là một dao động điều hòa. * Chú ý : Úng dụng của hình chiếu chuyển động tròn đều vào dao động điều hòa là một công cụ rất mạnh" trong các dạng bài toán liên quan đến quãng đường và thời gian trong dao động điều hòa. Không chỉ giới hạn trong phạm vi của chương Dao động cơ học này mà ở các chương về Dao dộng điện từ hay Dòng điện xoay chiều chúng ta cũng sẽ gặp lại ứng dụng của nó. Và việc hiểu để áp dụng được là một yêu cầu cần thiết và giúp chúng ta giải quyết nhanh các bài toán. 3. Các dạng bài toán cơ bản: Dạng 1: Tìm khoảng thời gian ngắn nhất để vật đi từ vị trí có li độ x 1 đến x 2 Cách giải : Chúng ta sử dụng ứng dụng của hình chiếu dao động điều hòa vào chuyển động tròn đều. Các bước thực hiện như sau : - Xác định các vị trí x 1 và x 2 trên trục quỹ đạo. - Tính các góc φ 1 , φ 2 với thỏa mãn (0 ≤ φ 1 , φ 2 ≤ π) - Thời gian ngắn nhất cần tìm là: Trang 1 Biên soạn: Nguyễn Ngọc Thạnh * Ví dụ điển hình : Ví dụ 1 : Một vật dao động điều hòa với chu kỳ T = 8s, tính thời gian ngắn nhất vật đi từ vị trí đến vị trí có li độ Hướng dẫn giải : Ta có tần số góc: Vậy thời gian ngắn nhất mà vật đi từ đến là . Ví dụ 2 : Một vật dao động điều hòa với chu kỳ T và biên độ là A. Tìm thời gian ngắn nhất mà vật đi từ vị trí: a. x = 0 (vị trí cân bằng) đến vị trí x = A. b. x = 0 (vị trí cân bằng) đến vị trí . c. đến vị trí x = A. Hướng dẫn giải : Thực hiện các thao tác như ví dụ 1 chúng ta có: a. Trang 2 Biên soạn: Nguyễn Ngọc Thạnh b. c. NHẬN XÉT : 3 Trường hợp trên là những trường hợp phổ biến nhất trong các kỳ thi và hầu như các bài toán lớn hơn thì biến đổi đều đưa về 3 trường hợp trên. Từ đó chúng ta cần ghi nhớ công thức: Khi vật đi từ vị trí cân bằng đến vị trí x = A hoặc x = -A và ngược lại thì Khi vật đi từ vị trí cân bằng đến vị trí hoặc và ngược lại thì Khi vật đi từ vị trí đến vị trí x = A hoặc đến x = -A và ngược lại thì Dạng 2: Tìm quãng đường vật đi được từ thời điểm t 1 đến t 2 . Cách giải : Xác định vị trí và chiều chuyển động của vật dựa vào việc giải các phương trình lượng giác sau: (v 1 và v 2 chỉ cần xác định dấu) Phân tích: Δt = t 2 – t 1 = n.T + T/2 + T/4 + t 0 (n ЄN; 0 ≤ t 0 < T/4) - Quãng đường đi được trong thời gian n.T + T/2 + T/4 là S 1 = n.4A+ 2A + A - Ta tính quãng đường vật đi được trong thời gian t 0 là bằng cách sau: • Tính li độ x 1 và dấu của vận tốc v 1 tại thời điểm • Tính li độ x 2 và dấu của vận tốc v 2 tại thời điểm t 2 • Nếu trong thời gian t 0 mà vật không đổi chiều chuyển động (v 1 và v 2 cùng dấu) thì quãng đường đi được trong thời gian cuối t 0 là S 2 = |x 2 - x 1 | Trang 3 Biên soạn: Nguyễn Ngọc Thạnh • Nếu trong thời gian t 0 mà vật đổi chiều chuyển động (v 1 và v 2 trái dấu) thì để tính quãng đường đi được trong thời gian cuối t 0 ta phải biểu diễn chúng trên trục tọa độ rồi tính S 2 . Từ đó quãng đường tổng cộng là S = S 1 + S 2 CHÚ Ý : + Nếu Δt = T/2 thì S 2 = 2A + Tính S 2 bằng cách định vị trí x 1 , x 2 và chiều chuyển động của vật trên trục Ox + Trong một số trường hợp có thể giải bài toán bằng cách sử dụng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều sẽ đơn giản hơn. + Tốc độ trung bình của vật đi từ thời điểm t 1 đến t 2 : với S là quãng đường tính như trên. Ví dụ điển hình : Ví dụ 1: Một vật dao động điều hòa với phương trình . Tính quãng đường vật đi được trong 1,1s đầu tiên. Hướng dẫn giải: Quãng đường vật đi được trong 1,1s đầu tiên tức là tính từ lúc vật bắt đầu chuyển động. Như vậy chúng ta phải thay t = 0 vào phương trình li độ và phương trình vận tốc để kiểm tra xem vật bắt đầu đi từ vị trí nào và theo chiều nào. Ta có : Tại t = 0 : Vậy vật bắt đầu đi từ vị trí x = - 1cm theo chiều dương. Ta lại có Quãng đường vật đi được là S = 5.4A+ 2A = 22A = 44cm. Ví dụ 2: Một vật dao động điều hòa với phương trình . Tính quãng đường vật đi được trong 2,25s đầu tiên. Hướng dẫn giải: Trang 4 Biên soạn: Nguyễn Ngọc Thạnh Cách 1 : (Sử dụng phân tích) Ta có : ; (s) Quãng đường vật đi được trong 2s đầu tiên là S 1 = 4A = 16cm. - Tại thời điểm t = 2s : - Tại thời điểm t = 2,25s : Từ đó ta thấy trong 0,25s cuối vật không đổi chiều chuyển động nên quãng đường vật đi được trong 0,25s cuối là S 2 = . Vậy quãng đường vật đi được trong 0,25s là S = Cách 2: (Sử dụng mối liên hệ giữa dao động điều hòa và chuyển động tròn đều). Tương tự như trên ta phân tích được Δt = 2,25s = T + 0,25(s) Trong một chu kỳ T vật đi được quãng đường S 1 = 4A = 16cm Xét quãng đường vật đi được trong 0,25s cuối. Trong thời gian 0,25s cuối thì góc mà vật quét được trên đường tròn bán kính A = 4cm là Độ dài hình chiếu của vật chính là quãng đường đi được. Độ dài hình chiếu này là . Từ đó ta cũng tìm được quãng đường mà vật đi được là S = Dạng 3: Tính quãng đường lớn nhất và nhỏ nhất vật đi được trong khoảng thời gian 0 < Δt < T/2. Cách giải: NHẬN XÉT : Vật có vận tốc lớn nhất khi qua VTCB, nhỏ nhất khi qua vị trí biên nên trong cùng một khoảng thời gian quãng đường đi được càng lớn khi vật ở càng gần VTCB và càng nhỏ khi càng gần vị trí biên. Sử dụng mối liên hệ giữa dao động điều hoà và chuyển đường tròn để để giải bài toán. Góc quét Δφ = ωΔt. • Quãng đường lớn nhất khi vật đi từ M 1 đến M 2 đối xứng qua trục sin (hình 1) Trang 5 Biên soạn: Nguyễn Ngọc Thạnh • Quãng đường nhỏ nhất khi vật đi từ M 1 đến M 2 đối xứng qua trục cos (hình 2) CHÚ Ý : + Trong trường hợp Δt > T/2 Tách: Trong đó: Trong thời gian quãng đường luôn là n.2A Trong thời gian Δt’ thì quãng đường lớn nhất, nhỏ nhất tính như trên. + Tốc độ trung bình lớn nhất và nhỏ nhất của trong khoảng thời gian Δt: và với S max ; S min tính như trên. Ví dụ điển hình : Ví dụ 1: Một vật dao động điều hòa với biên độ A và chu kỳ là T. Tìm quãng đường: a. Nhỏ nhất mà vật đi được trong . b. Lớn nhất mà vật đi được trong . c. Nhỏ nhất mà vật đi được trong . Hướng dẫn giải : a. Góc mà vật quét được là : Áp dụng công thức tính S min ta có: Trang 6 Biên soạn: Nguyễn Ngọc Thạnh b. Góc mà vật quét được là: Áp dụng công thức tính S max ta có: c. Do Quãng đường mà vật đi được trong luôn là 2A. Quãng đường nhỏ nhất mà vật đi được trong chính là quãng đường nhỏ nhất mà vật đi được trong . Theo câu a ta tìm được quãng đường nhỏ nhất mà vật đi được trong là . Vậy quãng đường nhỏ nhất mà vật đi được trong là Ví dụ 2 : Một vật dao động điều hòa với biên độ A và chu kỳ T. Tìm tốc độ trung bình nhỏ nhất và tốc độ trung bình lớn nhất của vật trong . Hướng dẫn giải : Góc quét Trang 7 Biên soạn: Nguyễn Ngọc Thạnh Dạng 4: Bài toán tìm li độ, vận tốc dao động sau (trước) thời điểm t một khoảng thời gian Δt. Biết tại thời điểm t vật có li độ x = x 0 . Cách giải: * Từ phương trình dao động điều hoà: x = Acos(ωt + φ) cho x = x 0 Lấy nghiệm ωt + φ = α với ứng với x đang giảm (vật chuyển động theo chiều âm vì v < 0) hoặc ωt + φ = -α ứng với x đang tăng (vật chuyển động theo chiều dương) * Li độ và vận tốc dao động sau (trước) thời điểm đó Δt giây là: hoặc Ví dụ điển hình : Một vật dao động điều hòa với phương trình: a. Biết li độ của vật tại thời điểm t là 4cm. Xác định li độ của vật sau đó 0,25s b. Biết li độ của vật tại thời điểm t là - 6cm. Xác định li độ của vật sau đó 0,125s c. Biết li độ của vật tại thời điểm t là 5cm. Xác định li độ của vật sau đó 0,3125s Hướng dẫn giải: 4. Bài tập tương tự luyện tập Bài 1: Một vật dao động điều hòa với phương trình . Gọi M và N là hai biên của vật trong quá trình dao động. Gọi I và J tương ứng là trung điểm của OM và ON. Hãy tính vận tốc trung bình của vật trên đoạn từ I tới J. Bài 2: Một vật dao động điều hòa với biên độ là A và chu kỳ T. Tìm: a) Quãng đường nhỏ nhất mà vật đi được trong . b) Quãng đường lớn nhất mà vật đi được trong . c) Tốc độ trung bình lớn nhất mà vật đi được trong . Trang 8 Biên soạn: Nguyễn Ngọc Thạnh Bài 3: Một vật dao động điều hòa với phương trình . Quãng đường vật đi được trong khoảng thời gian từ t 1 = 1,5s đến t 2 = là bao nhiêu? Bài 4: Một vật dao động điều hòa với chu kỳ T và biên độ A. Hãy tính khoảng thời gian ngắn nhất để vật đi từ vị trí có ly độ: a) x 1 = A đến x 2 = A/2 b) x 1 = A/2 đến x 2 = 0 c) x 1 = 0 đến x 2 = -A/2 d) x 1 = -A/2 đến x 2 = -A e) x 1 = A đến x 2 = A f) x 1 = A đến x 2 = A g) x 1 = A đến x 2 = -A/2 Phần 2: NĂNG LƯỢNG GIAO ĐỘNG ĐIỀU HÒA 1. Động năng - Là năng lượng sinh ra do sự chuyển động của vật, được tính theo công thức 2. Thế năng a. Thế năng của con lắc lò xo (Thế năng đàn hồi) - Là năng lượng sinh ra do sự đàn hồi của lò xo, được tính theo công thức b. Thế năng của con lắc đơn (Thế năng trọng trường) - Là năng lượng sinh ra do trọng lực của vật năng, được tính theo công thức Khi góc lệch α nhỏ thì có thể dùng công thức gần đúng Thay Vậy với con lắc đơn ta có công thức tính gần đúng thế năng: 3 Trang 9 Biên soạn: Nguyễn Ngọc Thạnh 3.Cơ năng trong dao động điều hòa Cơ năng = Động năng + Thế năng ,(với con lắc lò xo) ,(với con lắc đơn) Đặc biệt: ,(với con lắc lò xo) , (với con lắc đơn khi góc lệch lớn). , (với con lắc đơn khi góc lệch nhỏ) 4. Sự biến thiên của Động năng và Thế năng: Xét một vật dao động điều hòa với chu kỳ T, có phương trình dao động và phương trình vận tốc lần lượt là: Khi đó phương trình của Động năng là: Đặt: Khi đó Động năng biến thiên điều hòa với tần số góc ω d = 2ω → biến thiên điều hòa với chu kỳ và tần số: Tương tự ta cũng có phương trình của Thế năng: Đặt: Khi đó Thế năng điều hòa biến thiên với Tần số góc, tần số dao động và Chu kỳ dao động lần lượt là: Trang 10 [...]... phương trình dao động của con lắc là + Dạng 4 : Năng lượng dao động của con lắc đơn Chú ý khi làm bài tập : - Tính toán năng lượng dao động khi góc lệch lớn (Dao động của con lắc khi này là dao động tuần hoàn chứ không phải dao động điều hòa) : - Tính toán năng lượng dao động khi góc lệch nhỏ (lúc này dao động của con lắc là dao động điều hòa, thường thì trong kỳ thi Đại học sẽ là trường hợp này): Trang... Điều kiện để con lắc lò xo dao động điều hòa là bỏ qua ma sát, lực cản và vật dao động trong giới hạn đàn hồi 2 Phương trình dao động của con lắc lò xo x = Acos (ωt + φ) (cm) Với: • x: li độ dao động hay độ lệch khỏi vị trí cân bằng (cm) • A: Biên độ dao động hay li độ cực đại (cm) • ω : tần số góc của dao động (rad/s) • φ : pha ban đầu của dao động (t = 0) • (ωt + φ) : pha dao động tại thời điểm t (rad)... dài dao động với biên độ góc Tính động năng và tốc độ của con lắc khi nó đi qua vị trí có góc lệch , lấy g = 10m/s2 Hướng dẫn giải : Vận tốc của con lắc đơn được tính theo công thức: Động năng của con lắc là: + Dạng 3: Lập phương trình dao động của con lắc đơn * Chú ý : Khi lập phương trình dao động của con lắc đơn có hai dạng phương trình: - Phương trình dao động theo li độ dài: - Phương trình dao động. .. Điều kiện dao động điều hoà: Bỏ qua ma sát, lực cản và α0 . tần số dao động và Chu kỳ dao động lần lượt là: Trang 10 Biên soạn: Nguyễn Ngọc Thạnh Trang 11 Biên soạn: Nguyễn Ngọc Thạnh 5. Đồ thị dao động của Động năng và Thế năng trong dao động điều hòa Ta. hình chiếu của một chất điểm chuyển động tròn đều là một dao động điều hòa. * Chú ý : Úng dụng của hình chiếu chuyển động tròn đều vào dao động điều hòa là một công cụ rất mạnh" trong các dạng. MỘT SỐ DẠNG TOÁN VỀ DAO ĐỘNG ĐIỀU HÒA 1. Kiến thức nền tảng: - Quãng đường mà vật đi được trong 1 chu kỳ dao động là S = 4A. - Quãng đường mà vật đi được trong chu kỳ dao động là S = 2A. -

Ngày đăng: 25/04/2014, 18:31

HÌNH ẢNH LIÊN QUAN

5. Đồ thị dao động của Động năng và Thế năng trong dao động điều hòa - Công thức tổng hợp về dao động điều hoà
5. Đồ thị dao động của Động năng và Thế năng trong dao động điều hòa (Trang 12)
Sơ đồ ghép : Lò xo 1 – vật – lò xo 2. - Công thức tổng hợp về dao động điều hoà
Sơ đồ gh ép : Lò xo 1 – vật – lò xo 2 (Trang 18)
Sơ đồ ghép : Lò xo 1 – lò xo 2 – vật. - Công thức tổng hợp về dao động điều hoà
Sơ đồ gh ép : Lò xo 1 – lò xo 2 – vật (Trang 19)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w