1. Trang chủ
  2. » Tất cả

Đề thi thử đh toán có đáp án (72)

8 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 250,9 KB

Nội dung

D2014 l?n 3 HQ chinh thuc SỞ GD & ĐT HẢI DƯƠNG TRƯỜNG THPT HỒNG QUANG �� ĐỀ THI THỬ ĐẠI HỌC LẦN 3 NĂM 2014 Môn thi TOÁN; Khối D Thời gian làm bài 180 phút, không kể thời gian phát đề Câu 1 (2,0 điểm)[.]

SỞ GD & ĐT HẢI DƯƠNG TRƯỜNG THPT HỒNG QUANG  - ĐỀ THI THỬ ĐẠI HỌC LẦN NĂM 2014 Mơn thi: TỐN; Khối D Thời gian làm bài: 180 phút, không kể thời gian phát đề www.NhomToan.com www.LuyenThiThuKhoa.vn x − mx + (1) , (m tham số) Khảo sát biến thiên vẽ đồ thị hàm số (1) với m = Tìm m để tiếp tuyến đồ thị hàm số (1) điểm có hồnh độ tạo với đường Câu (2,0 điểm) Cho hàm số y = thẳng (d): y = − x + 2014 góc α 450 π  Câu (1,0 điểm) Giải phương trình sin x + sin x − cos x = sin  x −  4   y − 2xy = (2x − y )( x − 1)  Câu (1,0 điểm) Giải hệ phương trình  x − y = x −  π Câu (1,0 điểm) Tính tích phân I = ∫ π  sin x  x−  dx sin x  2cos x +  Câu (1,0 điểm) Cho hình hộp ABCD A ' B ' C ' D ' có đáy ABCD hình thoi cạnh a, tâm O ABC = 120o Góc cạnh bên AA ' mặt đáy ( ABCD ) 60o Đỉnh A ' cách điểm A, B, D M trung điểm cạnh CD Tính thể tích khối hộp ABCD A ' B ' C ' D ' khoảng cách từ điểm M đến mặt phẳng ( A ' BD ) Câu (1,0 điểm) Cho số thực x, y, z thỏa mãn: xyz = −1 x + y = 8xy − 2−z Câu7 (1,0điểm) Trong mặt phẳng Oxy, cho đường thẳng d1 : x + y − = 0; d2 : x − y + = Tìm giá trị lớn biểu thức: P = xy − ( x + y ) − cắt A Viết phương trình đường thẳng (d) qua điểm B(3; 5) cắt ( d1 ) ; ( d2 ) M N ( khác A) thỏa mãn 5AM = AN x +1 y − z − = = −2 mặt phẳng ( P ) : x + y + 3z + = Lập phương trình đường thẳng (d) song song với mặt phẳng ( P ) , Câu (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : qua điểm M ( 2;2;4 ) cắt đường thẳng ∆ Câu (1,0 điểm) Cho n số nguyên dương thỏa mãn: Cn2 = 3Cn6 Tìm số hạng chứa x khai n   triển nhị thức Niu-tơn  2x +  x  - Hết Thí sinh khơng sử dụng tài liệu Giám thị khơng giải thích thêm Họ tên thí sinh: ………………………………………… Số báo danh: ……………… Cảm ơn  Việt Lưu Tuấn (tuanviet96hd@gmail.com) đã gửi tới www.laisac.page.tl ĐÁP ÁN – THANG ĐIỂM ĐỀ THI THỬ ĐẠI HỌC LẦN III NĂM 2014 MƠN: TỐN; KHỐI: D (Đáp án - thang điểm gồm 06 trang) ĐÁP ÁN – THANG ĐIỂM ĐÁP ÁN ĐIỂ M TRƯỜNG THPT HỒNG QUANG Tổ: Toán *** CÂU Câu 1 (1,0 điểm) (2,0 đ) 1 Với m = 1, ta có y = x − x + • Tập xác định: D = ℝ • Sự biến thiên: − Chiều biến thiên: y ′ = x − x = x ( x − 4) 0,25 y ′ = ⇔ x ( x − 4) = ⇔ x = 0, x = −2, x = − Hàm số đồng biến khoảng ( −2;0 ) , ( 2; +∞ ) Hàm số nghịch biến khoảng ( −∞; −2 ) , ( 0;2 ) − Hàm số đạt cực đại điểm x = 0, yCD = y ( ) = Hàm số đạt cực tiểu điểm x = ±2, yCT = y ( ±2 ) = −2 0,25 − Giới hạn: lim y = +∞, lim y = +∞ x →−∞ x →+∞ Bảng biến thiên: x y' −∞ +∞ − −2 + 0 − +∞ + +∞ 0,25 y −2 −2 Đồ thị: 1Đồ thị hàm số nhận trục Oy làm trục đối 6xứng 0,25 10 5 (1,0 điểm) 10 Ta có: y ' ( x ) = x − mx ⇒ y ' (1) = − m Gọi ∆ tiếp tuyến đồ thị hs (1) điểm có hồnh độ ⇒ phương trình ∆ có dạng: y = y ' (1)( x − 1) + y (1) hay: y = (1 − m )( x − 1) + y (1) ⇔ (1 − m ) x − y + m + ∆ có vtpt n1 = (1 − m; − 1) =0 Đường thẳng (d) : x + y − 2014 = có vtpt n2 = (1;1) ( Do góc ∆ d α = 45o nên ta có cosα = cos n1 , n2 n1 n2 n1 n2 = cos45o ⇔ − 4m − (1 − 4m )2 + = 0,25 0,25 0,25 ) 0,25 2 Câu π 2 (1) (1,0 đ) sin x + sin x − cos x = sin  x −  4  (1) ⇔ 2sin x cos x − cos x − + sin x = ⇔ ( sin x − 1)( cos x + 1) = ⇔ 16 m = 16 m − 8m + ⇔ m = 0,25 sin x = ⇔  cos x + = +) sin 2x = ⇔ x = 0,25 π + kπ +) 2cosx + = ⇔ cosx = − 0,25 2π ⇔x=± + l2π 0,25 Kluận: Câu (1,0 đ)  y − 2xy = (2x − y )( x − 1)   x − y = x −1  Điều kiện: x ≥ (1) (2) (1) ⇔ ( 2x − y ) ( x − + y ) = ⇔  x − + y  =0 0,25  y = 2x +) Với x − + y = , với điều kiện x ≥ pt ⇔ x = 1; y = Thay vào pt (2) ta thấy không thỏa mãn ⇒ loại x = x −1 2 Đặt v = x − ≥ ⇒ x = v2 + , ta có: v2 + − v2 + = 0,25 +) Với y = 2x, thay vào pt (2) ta pt: x − ( ) ( ) 0,25 ⇔ v + v2 − v − = ( ) ⇔ ( v − 1) 2v3 + v2 + 3v + = ( ⇔ v = v3 + 2v2 + 3v + > 0, ∀v ≥ Với v = ⇒ x = 2, y = KL Câu (1,0 đ) 0,25 ) π I=∫ π  sin x  x−  dx sin x  2cos x +  π π I = 2∫ π sin π I1 = ∫ x xdx + ∫ π sin x π −2 s inx 2cosx + 0,25 dx xdx u = x  du = dx  Đặt  ⇒  dv = dx  v = − cot xdx sin x    π π   I1 =  − x cot x − ∫ cot xdx  π π     4 = 0,25 π d ( s inx ) π + 2∫ π s inx 0,25 π π 2 π I1 = + ln s inx = − ln 2 π π −2s inx I2 = ∫ dx = ∫ = 2cosx + = − + π 2cosx + π 2cosx + π 4 π +2 −2 3+ Vậy I = I1 + I = − ln 2 π π d ( 2cosx + ) 0,25 Câu (1,0 đ) B' A' D' C' B A K H O C - gt ⇒ ∆ABC cạnh a Gọi H hình chiếu A’ (ABCD), A ' A = A ' B = A ' D ⇒ HA = HB = HD ⇒ H tâm ∆ ABD ⇒ H thuộc AO cho AH = - D M 2 a a AO = = 3 0,25 ⇒ SH ⊥ ( ABCD ) ⇒ HA hình chiếu A’A ( ABCD) nên góc AA’ mp(ABCD) góc AA’ HA góc A ' AH = 60o ( A ' H ⊥ HA ⊂ ( ABCD ) ⇒ ∆A ' HA vuông H ⇒ A ' AH < 90o ) - Trong ∆vng A’AH có A ' H = AH tan A ' AH = AH tan 60o = - Diện tích hình thoi ABCD là: S ABCD = - Thể tích khối hộp ABCD A ' B ' C ' D ' là: a 3=a a2 BD.AC = ( đvdt) 2 V = A ' H S ABCD = a 0,25 a2 3 = a3 (đvtt) 2 - Vì M trung điểm CD, CD cắt (A’BD) D nên d ( M , ( A ' BD ) ) = d ( C, ( A ' BD ) ) ; ( ) ( mà CD cắt (A’BD) trung điểm O CD nên d C, ( A ' BD ) = d A, ( A ' BD ) ) 0,25 lại có AO=3HO nên d ( A, ( A ' BD ) ) = 3d ( H , ( A ' BD ) ) ⇒ d ( M, ( A ' BD ) ) = - d ( H , ( A ' BD ) ) Trong mp(A’OH) hạ HK ⊥ A ' O K ta c/m được: HK ⊥ ( A ' BD ) ⇒ d ( H , ( A ' BD ) ) = HK Trong ∆ vng A’HO ta có: = HK HO 3a ⇒ d ( M, ( A ' BD ) ) = HK = 2 13 + HA = 13 a ⇒ HK = Câu thực x, y, z thỏa mãn: xyz = −1 x + y = 8xy − (1,0 đ) Tìm giá trị lớn biểu thức: P = xy − ( x + y ) − 2−z a 13 0,25 - Ta có: 8xy − = x + y ≥ 2x y Đặt t = xy , ta có: 2t − 8t + ≤ ⇔ ≤ t ≤ - Ta có ( x + y ) ≥ 4xy, ∀x , y ∈ ℝ Dấu “ =” xảy x = y Khi P = xy − ( x + y ) − Xét hàm số: f ( t ) = −3t − f ' ( t ) = −3 − ( 2t + 1) ≤ xy − 4xy − 2−z 0,25 2+ xy = −3xy − xy 2xy + 0,25 t 1 = −3t − + , ∀ t ∈ [1;3] 2t + 2 ( 2t + 1) < 0, ∀t ∈ [1;3] 0,25 ⇒ f ( t ) nghịch biến đoạn [1;3] ⇒ f ( t ) ≤ f (1 ) = − 10 , ∀t ∈ [1;3] x = y   x = y = z = −1 10 10  xy = ⇒P≤− ⇒P=− ⇔ ⇔ 3  x = y = 1; z = −1  xyz = −1  x + y = 8xy −   x = y = z = −1 10 KL: Vậy giá trị lớn biểu thức P = −   x = y = 1; z = −1 Câu (1,0 đ) 0,25 d1 : x + y − = 0; d2 : x − y + = cắt A Viết phương trình đường thẳng (d) qua điểm B(3; 5) cắt ( d1 ) ; ( d2 ) M N ( khác A) thỏa mãn 5AM = AN - A = ( d1 ) ∩ ( d2 ) ⇒ A (1;1) - Gọi M ( m;2 − m ) giao điểm ( d1 ) (d) 0,25 ⇒ AM = ( m − 1;1 − m ) ; AM = m − ; BM = ( m − 3; −3 − m ) Gọi N ( 7n − 6; n ) giao điểm ( d2 ) (d) ⇒ AN = ( 7n − 7; n − 1) ; AN = n − ; BN = ( 7n − 9; n − 5) n = m n = m − Theo giả thiết: AN=5AM ⇔ n − = m − ⇔   m − = k (7n − 9)  −3 − m = k (n − 5) Mặt khác ta có B, M, N thẳng hàng ⇔ ∃k ∈ ℝ* : BM = k BN ⇔  0,25  k =   m =  m − = k (7m − 9)  - Với n = m ta có hệ  ⇔  k =   −3 − m = k (m − 5) 13    −3  m =  Với m = n = ⇒ M (1;1) N(1;1) loại Với m = n = 0,25 −3 −3 −3 −33 −3 ⇒ M ( ; ) N( ; ) Đường thẳng (d): x – y + 12 = 2 2  k =   m =  m − = k (5 − 7m) - Với n = – m ta có hệ  ⇔  −3  k =  −3 − m = k (−3 − m) 13    m = −3 Với m = ⇒ n = ⇒ M (1;1) N(1;1) loại Với m = −3 ⇒ n = ⇒ M (−3;5) N(29;5) Đường thẳng (d): y − = 0,25 Vậy có hai đường thẳng (d) thỏa mãn : x – y + 12 = ; y − = Cách 2: Câu - A = ( d1 ) ∩ ( d2 ) ⇒ A (1;1) - Lấy P ( 2;0 ) thuộc đường thẳng ( d1 ) Gọi ∆ đường thẳng kẻ từ P song song với (d) , cắt ( d2 ) Q Do 5AM = AN ⇒ 5AP = AQ Gọi Q ( y0 − 6; y0 ) ⇒ 50 ( y0 − 1) = 50 ⇒  - Với Q ( 8;2 ) ⇒ pt ( d ) : x − 3y + 12 = (thỏa mãn điều kiện A ∉ (d )  y0 = ⇒ Q ( −6;0 ) - Với Q ( −6;0 ) ⇒ pt (d ) : y − = KL: Câu (1,0đ)  y0 = ⇒ Q ( 8;2 ) - (thỏa mãn điều kiện A ∉ (d )  x = −1 + 3t  Ta có phương trình đường thẳng ∆ :  y = − 2t  z = + 2t  Gọi A ( −1 + 3t;2 − 2t;2 + 2t ) giao điểm (d) (∆) 0,25 ⇒ MA = ( 3t − 3; − 2t;2t − ) d / / ( P ) ⇒ MA.nP = (nP = (1;2;3 ) vtpt (P)) ⇔t=  12 18  ⇒ MA =  ; − ;  = ( 6; −9;4 ) 5 5  0,25 (d) qua , nhận u = ( 6; −9;4 ) vtcp thỏa mãn ycbt ( M ∉ ( P ) ⇒ d / / ( P )) Phương trình đường thẳng (d) là: Câu (1,0đ) x −2 y −2 z−4 = = −9 0,25 0,25 n ≥ 6, n ∈ ℕ*  ⇔n=7 Cn2 = 3Cn6 ⇔  n! n! =  2!( n − )! 6!( n − )!  0,25 Với n = ta có khai triển : 7   k  2x +  = ∑ C7 ( x ) x  k =0  7−k k   k   = ∑ C7 ( )  x  k =0 7− k k 14− x 7k 0,25 Số hạng chứa x khai triển nhị thức niu-tơn ứng với k thỏa mãn: k ∈ ℕ,0 ≤ k ≤  ⇔k =3  7k − = 14  ⇒ số hạng chứa x7 khai triển nhị thức niu-tơn là: C73 24 33 x = 15120.x 0,25 0,25 Chú ý: Học sinh giải cách khác cho điểm tối đa - Hết Cảm ơn  Việt Lưu Tuấn (tuanviet96hd@gmail.com) đã gửi tới www.laisac.page.tl ...ĐÁP ÁN – THANG ĐIỂM ĐỀ THI THỬ ĐẠI HỌC LẦN III NĂM 2014 MƠN: TỐN; KHỐI: D (Đáp án - thang điểm gồm 06 trang) ĐÁP ÁN – THANG ĐIỂM ĐÁP ÁN ĐIỂ M TRƯỜNG THPT HỒNG QUANG Tổ: Toán *** ... điểm có hồnh độ ⇒ phương trình ∆ có dạng: y = y '' (1)( x − 1) + y (1) hay: y = (1 − m )( x − 1) + y (1) ⇔ (1 − m ) x − y + m + ∆ có vtpt n1 = (1 − m; − 1) =0 Đường thẳng (d) : x + y − 2014 = có. .. Tổ: Toán *** CÂU Câu 1 (1,0 điểm) (2,0 đ) 1 Với m = 1, ta có y = x − x + • Tập xác định: D = ℝ • Sự biến thi? ?n: − Chiều biến thi? ?n: y ′ = x − x = x ( x − 4) 0,25 y ′ = ⇔ x ( x − 4) = ⇔ x

Ngày đăng: 28/03/2023, 20:14

w