Sángkiến kinh nghiệm: “Kó năng vậndụng 7 hằngđẳngthứcvàogiảibàitậpđại số” MỤC LỤC STT Tiêu đề Trang 1. A. PHẦN MỞ ĐẦU 2-4 2. I. Lí do chọn đề tài. 2 3. II. Đối tượng và phạm vi tổng kết kinh nghiệm 3 4. III. Nhiệm vụ tổng kết kinh nghiệm. 3 5. IV. Phương pháp tổng kết kinh nghiệm. 4 6. V. Cơ sở tiến hành tổng kết kinh nghiệm. 4 7. B. Phần nội dung 2-13 8. Chương I. Cơ sở lí luận và thực trạng vấn đề 2 9. 1. Cơ sở lí luận 2 10. 2. Thực trạng vấn đề 3 11. Chương II. Phương pháp thực hiện 3-12 12. I. Nhận biết cách sử dụng một cách nhanh nhẹn bảy hằng đẳngthức đáng nhớ. 3-6 13. 1. Một số câu hỏi trắc nghiệm dạng điền khuyết 4 14. 2. Tính giá trị biểu thứcsố 4 15. 3. Chứng minh với mọi số ngun n 4-5 16. 4. Chứng minh giá trị biểu thức khơng phụ thuộc vào giá trị của biến 5 17. 5. Tính giá trị biểu thứcđạisố 5 18. 6. Một số câu hỏi trắc nghiệm dạng khoanh tròn đáp án đúng 5-6 19. II. Thơng hiểu nắm được hằngđẳngthức để giảibàitập 6-9 20. 1. Dùnghằngđẳngthức để phân tích đa thức thành nhân tử 6-7 21. 2. Dùnghằngđẳngthức để giải một số loại bàitập khác 7-8 22. 3. Dùnghằngđẳngthức để tìm giá trị lớn nhất, nhỏ nhất 8 23. 4. Dùnghằngđẳngthức để trục căn thức ở mẫu 8-9 24. 5. Câu hỏi trắc nghiệm 9 25. III. Vận dụng hằngđẳngthức để giải các bàitập chun sâu vào các vấn đề thường gặp ở các bàitập nâng cao. 9-12 26. 1. Rút gọn căn thức 9-10 27. 2. Rút gọn biểu thức 10 28. 3. Tính giá trị nhỏ nhất 10-11 29. 4. Chứng minh 11 Người thực hiện: Lại Văn Đồng. Đơn vò: Trường THCS Tân Tiến Trang 1 Sángkiến kinh nghiệm: “Kó năng vậndụng 7 hằngđẳngthứcvàogiảibàitậpđại số” 30. 5. Tìm điều kiện của ẩn để biểu thức đạt giá trị nhỏ nhất, lớn nhất 11-12 31. 6. Tìm giá trị lớn nhất 12 32. Chương III: Kết quả thực hiện 12-13 33. C. KẾT LUẬN – KIẾN NGHỊ 13 34. 1. Kết luận 13 35. 2. Kiến nghị 13 36. Tài liệu tham khảo 14 Người thực hiện: Lại Văn Đồng. Đơn vò: Trường THCS Tân Tiến Trang 2 Sángkiến kinh nghiệm: “Kó năng vậndụng 7 hằngđẳngthứcvàogiảibàitậpđại số” A. PHẦN MỞ ĐẦU I. LÝ DO CHỌN ĐỀ TÀI: 1 . Lý Do Khách Quan: - Qua những năm thực tế giảng dạy mơn đạisố 8, phần lớn học sinh thuộc 7 hằng đẳngthức đáng nhớ nhưng trong thực hành về chiều rộng lẫn chiều sâu thì học sinh khơng vậndụng được đi đến kết quả như mong muốn. - Phần trắc nghiệm khách quan, tự luận về thơng hiểu và vậndụng học sinh đạt kết quả chưa cao. Định hướng giảibài tốn có áp dụng hằngđẳngthức đáng nhớ nhằm hình thành tư duy lơgic. Khả năng tổng hợp, phân tích, tìm ra hướng giải, định hướng đúngbài tốn nhằm phát huy tính thơng minh, sáng tạo của học sinh để đi kết quả nhanh, gọn mà đảm bảo tính chính xác. Loại bỏ những bước giải rườm rà nhằm tạo sự tự tin khi làm tốn. - Rèn luyện khả năng vậndụng trong thực tế một cách thơng minh, nhanh nhẹn. 2. Lý do chủ quan: - Mơn tốn nói chung, bảy hằngđẳngthức nói riêng vậndụng rất nhiều trong việc giải tốn. Nắm được cách vậndụng sẽ ứng dụng rất nhiều vào các lớp trên nhất là đối với mơn đạisố lớp 8, 9, - Vậndụng của 7 hằngđẳngthứcđáng nhớ rất nhiều mà học sinh chưa nắm được phương pháp, do đó chưa thật sự đam mê mà học tập còn gượng ép. - Hình thành được khả năng vậndụng được 7 hằngđẳngthức để làm tiên đề học mơn đại số. Tạo căn bản để học lên những lớp trên. Xác định được niềm tin, học mơn tốn cũng nhẹ nhàng như học các mơn khác. Vì vậy tơi chọn đề tài này nhằm mục đích nâng cao chất lượng các tiết luyện tập môn đạisố 8, 9 trong trường Trung Học Cơ Sở. II. ĐỐI TƯỢNG VÀ PHẠM VI TỒNG KẾT KINH NGHIỆM: 1. Đối tượng: Những kinh nghiệm thực tiễn trong cơng tác giảng dạy được phân ở trường Trung Học Cơ Sở Tân Tiến. 2. Phạm vi tổng kết: Đề tài thực hiện trong phạm vi lớp 8C, 8D của trường THCS Tân Tiến năm học 2007 - 2008 và học kì một năm học 2008 - 2009. III. NHIỆM VỤ TỒNG KẾT KINH NGHIỆM: - Giúp giáo viên dạy lớp nâng cao chất lượng lớp mình, hạn chế những sai sót của học sinh khi giải tốn, tạo được hứng thú học tốn của học sinh. - Định hướng giải một bài tốn, có phương pháp thích hợp với đề bài, tổng kết được các dạng tốn, có được niềm tin vững vàng khi giải tốn. - Học sinh biết phân tích, tổng hợp, so sánh, xét tương tự, trừu tượng hố, khái qt hố để giải các bài tốn từ đơn giản đến phức tạp. - Lập kế hoạch giải một bài tốn theo phương pháp tích cực. Người thực hiện: Lại Văn Đồng. Đơn vò: Trường THCS Tân Tiến Trang 3 Sángkiến kinh nghiệm: “Kó năng vậndụng 7 hằngđẳngthứcvàogiảibàitậpđại số” IV. PHƯƠNG PHÁP TỔNG KẾT KINH NGHIỆM: 1. Nắm vững cách nhớ bày hằngdẳngthức theo kinh nghiệm của giáo viên truyền đạt hay theo cách nhớ riêng của học sinh để khi viết ra khơng nhầm lẫn. Từ đó nhận biết các bàitập đơn giản. 2. Luyện tập, vậndụng các kiếnthức đã học kết hợp với 7 hằngđẳngthức để giải các bài tập. Rèn luyện các thao tác tư duy, tính tốn để giảibàitập nhanh nhẹn, chính xác. 3.Thơng hiểu vấn đề vậndụnggiải các bàitập phức tạp, rèn luyện học sinh hiểu rõ cách vận dụng. Đi sâu vào từng bàitập để hiểu được tầm quan trọng của nó đối với việc giải các bàitập liên quan. V. CƠ SỞ TIẾN HÀNH TỔNG KẾT KINH NGHIỆM: Thành quả bước đầu áp dụng “Bảy hằngđẳng thức” được tổng kết từ lớp 8C, 8D năm học 2007 – 2008 và học kì I năm học 2008 - 2009 tại trường THCS Tân Tiến. Kinh nghiệm này được tập thể giáo viên nhất là các giáo viên dạy cùng khối áp dụng nâng cao chất lượng học cho học sinh tồn khối. B. PHẦN NỘI DUNG CHƯƠNG I: CƠ SỞ LÝ LUẬN VÀ THỰC TRẠNG VẤN ĐỀ I. CƠ SỞ LÝ LUẬN: - Bảy hằngđẳngthức là một bộ phận của phân mơn đạisố 8 nhưng nó áp dụng xun suốt chương trình học lớp 8, Từ đó nếu các em khơng nắm được phương pháp nhớ và vậndụng thì việc học thành việc học “vẹt” khơng vậndụng được trong giải tốn. - Thực hành giải tốn phải có những thao tác nhất định, dứt khốt, nhanh nhẹn, giản đơn chứ khơng rườm rà, cầu kỳ sẽ đưa đến bài tốn đơn giản thành phức tạp. Do đó giáo viên cần hướng dẫn học sinh có những trình tự nhất định, hình thành lại hướng gọn gàng, dễ hiểu để đi đến kết quả nhanh, chính xác. - Học sinh học tập một cách máy móc hay dựa vàobài mẫu chưa tự tin hình thành cho mình một phương pháp nhất định để giải một bài tốn. - Còn một số học sinh xem nhẹ việc học tập, học là để đối phó. Là giáo viên chúng ta nên giáo dục học sinh hiểu được những kiềnthức ta biết là một giọt nước. Những điều chưa biết là biển cả mênh mơng. Do đó giáo viên phải xác định học sinh có thái độ học tậpđúng đắn để nắm bắt kịp được những thơng tin, khoa học hiện đại và ngày càng phát triển. - Giáo viên cần lưu ý tránh những đơn điệu nhàm chán trong khi giải tốn. Tạo được những hứng thú khi học tốn và giúp các em rất nhiều trong cuộc sống hàng ngày. - Thi đua và biểu dương những gương sáng học tốt và cần học hỏi kinh nghiệm của các em này. Người thực hiện: Lại Văn Đồng. Đơn vò: Trường THCS Tân Tiến Trang 4 Sángkiến kinh nghiệm: “Kó năng vậndụng 7 hằngđẳngthứcvàogiảibàitậpđại số” II. THỰC TRẠNG VẤN ĐỀ: Khi giảibàitập các em cần có những kỹ năng cơ bản sau: a) Học thuộc các hằngđẳngthức chú ý các giá trị Giả sử (A+B) 2 = A 2 + 2AB + B 2 trong đó A;B là một biểu thức chứ khơng nghĩ đơn thuần là một số hay một biến, học sinh dễ nhầm lẫn và đi đến kết quả sai. Vd:(2x+3y) 2 = 2x 2 + 2.2x.3y + 3y 2 Cái sai: (2x) 2 ; (3y) 2 do đó giáo viên nên cân nhắc kỷ khi thảo luận nhóm hay kiểm từng học sinh để khắc sâu hơn . b) Bài tốn u cầu chúng ta làm gì? Triển khai hằngđẳng thức, viết tổng thành tích, tìm x, cộng trừ, nhân, chia phân thức… c) Định hướng giải một bài tốn là làm cho học sinh nảy ra nhiều tình huống làm cho học sinh bối rối. Do đó giáo viên ln lưu ý bàigiải u cầu ta phải đi các bước nào, làm gì? Có dùnghằngđẳngthức hay khơng và sử dụnghằngđẳngthức nào thì hợp lý. Những thao tác đòi hỏi sự nhịp nhàng, hợp lý để bài tốn được gọn gàng, đi đến kết quả nhanh, chính xác nhất. Lưu ý cách trình bày để bàigiải tốt lên nội dung cần truyền tải đến người xem. d) Giải một bài tốn có dùnghằngđẳngthức nên rèn luyện nhiều tạo kỹ năng thực hành tốt. Đi từ bài đơn giản đến phức tạp. Sử dụng thành thạo, nâng cao khả năng suy luận, đòi hỏi phải kỹ lưỡng, Biết vậndụng các điều đã học vào trong bàigiải để phân tích đề tốn, nhận định được A;B để dễ dàng trong việc tính tốn. Khi học mơn tốn nói chung, hằngđẳngthức nói riêng việc tâm huyết là điều cần thiết nhất. Giáo viên cần tạo cho học sinh phương pháp học tốn, các em có sự đam mê và sự đam mê đó sẽ làm cho học sinh học tốn nhẹ nhàng và vững niềm tin đi tiếp trong bước đường học vấn. CHƯƠNG II: PHƯƠNG PHÁP THỰC HIỆN I. NHẬN BIẾT CÁCH SỰ DỤNG MỘT CÁCH NHANH NHẸN BẢY HẰNGĐẲNG THỨC: 1/ Bình phương một tổng (A+B) 2 = A 2 +2AB+B 2 2/ Bình phương một hiệu (A-B) 2 = A 2 -2AB+B 2 3/ Hiệu hai bình phương A 2 - B 2 = (A+B)(A-B) 4/ Lập phương một tổng (A+B) 3 =A 3 +3A 2 B+3AB 2 +B 3 5/ Lập phương một hiệu (A-B) 3 =A 3 -3A 2 B+3AB 2 -B 3 6/ Tổng hai lập phương A 3 +B 3 =(A+B)(A 2 -AB+B 2 ) 7/ Hiệu hai lập phương A 3 -B 3 =(A-B)(A 2 +AB+B 2 ) Trong hoạt động dạy học theo phương pháp đổi mới, giáo viên chuyển từ thói quen học Người thực hiện: Lại Văn Đồng. Đơn vò: Trường THCS Tân Tiến Trang 5 Sángkiến kinh nghiệm: “Kó năng vậndụng 7 hằngđẳngthứcvàogiảibàitậpđại số” TÀI LIỆU THAM KHẢO 1. Bàitập tốn 8(Nhà xuất bản giáo dục) 2. Bàitập tốn 9(Nhà xuất bản giáo dục) 3. Đề thi tốn 8(Nguyễn Đức Tấn – Nguyễn Hồng Anh – Lương Anh Văn – Bùi Ruy Tân – Trương Đức Long – Vũ Đức Đồn) – NXB: Đại học Quốc gia Thành Phố Hồ Chí Minh. 4. Thực hành giải Tốn(giáo trình đào tạo giáo viên THCS hệ cao đẳng sư phạm) – Năm 2001. 5. Nâng cao và phát triển Tốn 9 - tập 1(Vũ Hữu Bình) NXB Giáo dục năm 2005. Người thực hiện: Lại Văn Đồng. Đơn vò: Trường THCS Tân Tiến Trang 6 Sángkiến kinh nghiệm: “Kó năng vậndụng 7 hằngđẳngthứcvàogiảibàitậpđại số” Người thực hiện: Lại Văn Đồng. Đơn vò: Trường THCS Tân Tiến Trang 7 . vi tổng kết kinh nghiệm 3 4. III. Nhiệm vụ tổng kết kinh nghiệm. 3 5. IV. Phương pháp tổng kết kinh nghiệm. 4 6. V. Cơ sở tiến hành tổng kết kinh nghiệm. 4 7. B. Phần nội dung 2-13 8. Chương I Trang 3 Sáng kiến kinh nghiệm: “Kó năng vận dụng 7 hằng đẳng thức vào giải bài tập đại số” IV. PHƯƠNG PHÁP TỔNG KẾT KINH NGHIỆM: 1. Nắm vững cách nhớ bày hằng dẳng thức theo kinh nghiệm của giáo. môn đại số 8, 9 trong trường Trung Học Cơ Sở. II. ĐỐI TƯỢNG VÀ PHẠM VI TỒNG KẾT KINH NGHIỆM: 1. Đối tượng: Những kinh nghiệm thực tiễn trong cơng tác giảng dạy được phân ở trường Trung Học Cơ