Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [2] Cho hình hộp chữ nhật ABCD A′B′C′D′ có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC′A′ bằng A[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab B D A √ C √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu [2-c] Cho a = log27 5, b = log8 7, c = log2 Khi log12 35 3b + 3ac 3b + 2ac 3b + 2ac A B C c+2 c+3 c+2 3b + 3ac c+1 [ = 60◦ , S O Câu [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 A C B a 57 D 17 19 19 Câu Thập nhị diện (12 mặt đều) thuộc loại A {5; 3} B {4; 3} C {3; 3} D {3; 4} D Câu mệnh đề sau, mệnh Z Cho hàm số f (x), g(x) Z liên tục Z R Trong Z Z đề sai? Z A Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx 2n + Câu Tính giới hạn lim 3n + 2 A B C D Câu Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z f (x)dx = f (x) B Z C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu [1] Tập ! xác định hàm số y =! log3 (2x + 1) ! 1 A −∞; B −∞; − C − ; +∞ 2 ! D ; +∞ Câu Khẳng định sau đúng? A Hình lăng trụ tứ giác hình lập phương B Hình lăng trụ đứng hình lăng trụ C Hình lăng trụ đứng có đáy đa giác hình lăng trụ D Hình lăng trụ có đáy đa giác hình lăng trụ Câu 10 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 13 B log2 2020 C log2 13 D 2020 Câu 11 [1-c] Giá trị biểu thức A B −2 log7 16 log7 15 − log7 15 30 C D −4 Trang 1/4 Mã đề Câu 12 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 13 Cho hai đường thẳng phân biệt d d0 đồng phẳng Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Có B Có hai C Khơng có D Có hai Câu 14 [4-1245d] Trong tất số phức z thỏa mãn hệ √ |z − − i| √ thức |z − + 3i| = Tìm A B C 10 D d = 30◦ , biết S BC tam giác Câu 15 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 16 13 Câu 16 [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + Tìm giá trị tham số m để hàm số nghịch biến R A −2 ≤ m ≤ −1 B −2 < m < −1 C (−∞; −2) ∪ (−1; +∞) D (−∞; −2] ∪ [−1; +∞) Z Câu 17 Cho hàm số f (x) liên tục đoạn [0; 1] thỏa mãn f (x) = 6x f (x )− √ Tính f (x)dx 3x + A B C D −1 Câu 18 Cho hình chóp S ABCD có cạnh đáy 2a Mặt bên hình chóp tạo với đáy góc 60◦ Mặt phẳng (P) chứa cạnh AB qua trọng tâm G tam giác S AC cắt S C, S D M, n Thể tích khối √ chóp S ABMN √ √ √ 5a3 a3 4a3 2a B C D A 3 Câu 19 Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ 0 ABC.A0 B √ C √ a a3 a3 3 A B a C D Câu 20 Hình chóp tứ giác có mặt phẳng đối xứng? A Bốn mặt B Ba mặt C Hai mặt D Một mặt Câu 21 Cho hàm số y = x3 − 2x2 + x + Mệnh ! đề đúng? ! 1 A Hàm số nghịch biến khoảng −∞; B Hàm số nghịch biến khoảng ; 3! C Hàm số nghịch biến khoảng (1; +∞) D Hàm số đồng biến khoảng ; 3 Câu 22 [2-c] Giá trị lớn hàm số f (x) = e x −3x+3 đoạn [0; 2] A e2 B e3 C e5 D e Câu 23 [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x [0; 1] A m = ± B m = ± C m = ±3 D m = ±1 Trang 2/4 Mã đề !2x−1 !2−x 3 Câu 24 Tập số x thỏa mãn ≤ 5 A (−∞; 1] B (+∞; −∞) C [1; +∞) D [3; +∞) Câu 25 Khối đa diện loại {3; 4} có số đỉnh A 10 B D C √ Câu 26 [2] Thiết diện qua trục hình nón trịn xoay tam giác có diện tích a2 Thể tích khối nón √ √ cho √ √ πa πa3 πa3 πa3 A V = B V = C V = D V = 6 Câu 27 Hình chóp tứ giác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt √ Câu 28 Xác định phần ảo số √ phức z = ( + 3i) √ A B C −7 D −6 x−2 x−1 x x+1 Câu 29 [4-1212d] Cho hai hàm số y = + + + y = |x + 1| − x − m (m tham x−1 x x+1 x+2 số thực) có đồ thị (C1 ) (C2 ) Tập hợp tất giá trị m để (C1 ) cắt (C2 ) điểm phân biệt A (−∞; −3) B (−∞; −3] C [−3; +∞) D (−3; +∞) Câu 30 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 4) C (2; 4; 6) D (2; 4; 3) Câu 31 [2D1-3] Tìm giá trị tham số m để hàm số y = x3 − mx2 + 3x + đồng biến R A m ≥ B −3 ≤ m ≤ C −2 ≤ m ≤ D m ≤ Câu 32 Mặt phẳng (AB0C ) chia khối lăng trụ ABC.A0 B0C thành khối đa diện nào? A Hai khối chóp tứ giác B Một khối chóp tam giác, khối chóp ngữ giác C Hai khối chóp tam giác D Một khối chóp tam giác, khối chóp tứ giác Câu 33 Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) x→a x→b D lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→a x→b x→b ! ! ! x 2016 Tính tổng T = f +f + ··· + f Câu 34 [3] Cho hàm số f (x) = x +2 2017 2017 2017 2016 A T = B T = 1008 C T = 2017 D T = 2016 2017 Câu 35 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 1% năm Biết không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau năm người thu (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định thời gian lãi suất không đổi người khơng rút tiền ra? A 12 năm B 10 năm C 13 năm D 11 năm − xy Câu 36 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 − 11 + 19 18 11 − 29 A Pmin = B Pmin = C Pmin = D Pmin = 9 21 Trang 3/4 Mã đề Câu 37 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Z F(x) = − cos x nguyên hàm hàm số f (x) = sin x u0 (x) dx = log |u(x)| + C C u(x) D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab C √ B D √ A √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 39 Khối đa diện loại {3; 4} có số cạnh A 10 B C 12 D Câu 40 Khối lăng trụ tam giác có đỉnh, cạnh, mặt? A đỉnh, cạnh, mặt B đỉnh, cạnh, mặt C đỉnh, cạnh, mặt D đỉnh, cạnh, mặt - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C A C A B A C 11 13 D B D 15 C 10 C 12 B 14 B 16 A 17 A 18 19 A 20 A 21 B 23 D 25 28 C C 32 C 22 C 24 C 26 A B 30 B D 29 B 31 B 33 B 34 B 35 A 36 B 37 C 39 C 38 A 40 B ... mặt D đỉnh, cạnh, mặt - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 C A C A B A C 11 13 D B D 15 C 10 C 12 B 14 B 16 A 17 A 18 19 A 20 A 21... m = ±1 Trang 2/4 Mã đề !2x−1 !2−x 3 Câu 24 Tập số x thỏa mãn ≤ 5 A (−∞; 1] B (+∞; −∞) C [1; +∞) D [3; +∞) Câu 25 Khối đa diện loại {3; 4} có số đỉnh A 10 B D C √ Câu 26 [2] Thi? ??t diện qua trục... BC tam giác Câu 15 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 16