SỞ GD & ĐT TP HỒ CHÍ MINH Trường TH, THCS và THPT ĐỀ KIỂM TRA HỌC KỲ I ( 2019 – 2020 ) TRƯƠNG VĨNH KÝ Môn TOÁN – Khối 10 Thời gian làm bài 90 phút (Đề gồm 01 trang) (Học sinh không được sử dụng tài li[.]
SỞ GD & ĐT TP HỒ CHÍ MINH Trường TH, THCS THPT TRƯƠNG VĨNH KÝ ĐỀ KIỂM TRA HỌC KỲ I ( 2019 – 2020 ) Mơn: TỐN – Khối: 10 Thời gian làm bài: 90 phút (Đề gồm 01 trang) (Học sinh không sử dụng tài liệu) Mã đề: A Họ tên học sinh: Lớp: Số báo danh: Chữ ký học sinh: Ngày: 17/ 12/ 2019 Câu (1 điểm) Tìm tập xác định hàm số sau: a.) y 2x x2 b.) y x x Câu (3 điểm) Giải phương trình hệ phương trình sau: a.) x2 x x 2 x y b.) 2 x xy y c.) x 3x x 11x Câu (2 điểm) a.) Xác định parabol: ( P) : y ax bx biết (P) có đỉnh I 2; b.) Tìm tọa độ giao điểm P : y x x đường thẳng d : y x Câu (1 điểm) Tìm m để phương trình x 2mx 2m có hai nghiệm phân biệt x1 , x2 cho x13 x2 x1 x2 10 Câu (3 điểm) Trong mặt phẳng Oxy , cho tam giác ABC với A(1; 2), B (3; 2), C (2;7) a.) Tìm tọa độ trọng tâm G tam giác ABC b.) Chứng tỏ tam giác ABC vng B c.) Tìm tọa độ điểm D để ABCD hình chữ nhật d.) Tìm tọa độ điểm E biết tam giác BCE có độ dài cạnh BE = độ dài cạnh CE số nguyên - HẾT - ĐÁP ÁN TỐN 10 – KIỂM TRA HỌC KÌ – 2019-2020 – ĐỀ A Câu 1 điểm Tìm tập xác định hàm số sau: a.) Điều kiện: TXĐ : D = R\{ 0.5 } b.) 0.5 Điều kiện: Câu Giải phương trình hệ phương trình sau: điểm x2 x x a.) 0.5 x2 6x x 0.5 x x 4 n 2 x y b.) 2 x xy y 0.5 y 2x 2 x 5x 1 2x 1 2x y 2x 15x 9x y 2x x y 1 x y 5 c.) x 3x 5x2 11x Điều kiện: x 0.5 0.25 x x 11 3x 3x 5x2 15x 20 0.25 x2 3x 9x2 27x 36 x x 11 3x 3x 5 x2 3x 0.25 x2 3x 5 x x 11 3x 3x x 1 n x2 3x x n Câu 0.25 a.) Xác định (P): y ax bx biết (P) có đỉnh I 2; Hoành độ đỉnh x điểm 0.25 b 4a b 2a Đỉnh I 2; 0 P 4a 2b 0.25 4a b a 2 Ta có hệ phương trình 4a 2b 4 b 0.25 Vậy: P : y 2x2 2x 0.25 b.) Tìm tọa độ giao điểm P : y x x đường thẳng d : y x điểm x y Phương trình hồnh độ giao điểm: x2 4x x x y 0.25x3 0.25 Vậy tọa độ giao điểm (P) (d) là: A(3; 1), B(2; 0) Câu Tìm m để phương trình có hai nghiệm phân biệt x1, x2 điểm cho 0.25 0.25 0.25 Yêu cầu toán 0.25 Câu Trong mặt phẳng Oxy cho tam giác ABC với A(1; -2), B(-3; 2), C(2; 7) điểm a.) Tìm tọa độ trọng tâm G tam giác ABC Tọa độ trọng tâm G tam giác 0.5 b)Chứng tỏ tam giác ABC vuông B 0.5 AB 2, BC 2, AC 82 Ta có: AB2 BC2 AC2 32 50 82 Suy tam giác ABC vng B Có thể sử dụng tích vơ hướng c.) Tìm tọa độ điểm D để ABCD hình chữ nhật Vì tam giác ABC vng A nên ABCD hình chữ nhật AD BC xD xD D 6;3 yD yD d.) Tìm tọa độ điểm E biết tam giác BCE có độ dài cạnh BE = Ta có: BC BE CE BC BE CE 1 điểm 0.25 0.75 điểm 0.25 Mà CE nguyên nên CE = x 32 y 22 BE Suy điểm E thỏa: 2 CE x 2 y 7 49 0.25 x y x y 14 18 y x 5 2y2 42 y 52 11 5 y x 5 0.25 18 14 E ; 5 Vậy tọa độ điểm E là: 11 E ; 5 0.25 SỞ GD & ĐT TP HỒ CHÍ MINH Trường TH, THCS THPT TRƯƠNG VĨNH KÝ ĐỀ KIỂM TRA HỌC KỲ I ( 2019 – 2020 ) Môn: TOÁN – Khối: 10 Thời gian làm bài: 90 phút (Đề gồm 01 trang) (Học sinh không sử dụng tài liệu) Mã đề: B Họ tên học sinh: Lớp: Số báo danh: Chữ ký học sinh: Ngày: 17/ 12/ 2019 Câu (1 điểm) Tìm tập xác định hàm số sau: a.) y 2x x2 b.) y x x Câu (3 điểm) Giải phương trình hệ phương trình sau: a.) x2 x x 2 x y b.) 2 x y 3xy c.) x 3x x 11x Câu (2 điểm) a.) Xác định parabol: ( P) : y ax bx biết (P) có đỉnh I 1; b.) Tìm tọa độ giao điểm P : y x x đường thẳng d : y x Câu (1 điểm) Tìm m để phương trình x 2mx 2m có hai nghiệm phân biệt x1 , x2 cho x13 x2 x1 x2 10 Câu (3 điểm) Trong mặt phẳng Oxy , cho tam giác ABC với A(3; 2), B (1; 2), C (2;7) a.) Tìm tọa độ trọng tâm G tam giác ABC b.) Chứng tỏ tam giác ABC vuông A c.) Tìm tọa độ điểm D để ABDC hình chữ nhật d.) Tìm tọa độ điểm E biết tam giác ACE có độ dài cạnh AE = độ dài cạnh CE số nguyên - HẾT - ĐÁP ÁN TOÁN 10 – KIỂM TRA HỌC KÌ – 2019-2020 – ĐỀ B Câu Tìm tập xác định hàm số sau: điểm a.) Điều kiện: TXĐ : D = R\{ 0.5 } b.) Điều kiện: 0.5 Câu Giải phương trình hệ phương trình sau: x2 x x 3 x 2 x 4x x x 2 x 4x x 6x điểm a.) x x loai 2 x y b.) 2 x y 3xy 0.5 0.5 0.5 y 2x 2 4x 3x 1 2x 1 2x y 2x 2x x y 2x x y x y 0.5 c.) Điều kiện: 0.25 0.25 0.25 0.25 Câu a.) Xác định (P): y ax bx biết (P) có đỉnh I 1; Hồnh độ đỉnh x điểm 0.25 b 2a b 2a Đỉnh I 1;2 P a b 0.25 2a b a Ta có hệ phương trình a b 1 b 2 0.25 Vậy: P : y x2 2x 0.25 b.) Tìm tọa độ giao điểm P : y x x đường thẳng d : y x điểm x 1 y Phương trình hồnh độ giao điểm: x2 4x x x y 1 0.25x3 0.25 Vậy tọa độ giao điểm (P) (d) là: A(1; 0), B(2; -1) Câu Tìm m để phương trình có hai nghiệm phân biệt x1, x2 điểm cho 0.25 0.25 0.25 Yêu cầu toán 0.25 Câu Trong mặt phẳng Oxy cho tam giác ABC với A(-3; 2), B(1; -2), C(2; 7) a.) Tìm tọa độ trọng tâm G tam giác ABC điểm 0.5 Tọa độ trọng tâm G tam giác b.)Chứng tỏ tam giác ABC vng A Ta có: AB 2, AC 2, BC 82 0.5 Ta có: AB2 AC2 BC2 32 50 82 Suy tam giác ABC vng A Có thể sử dụng tích hướng c.)Tìm tọa độ điểm D để ABDC hình chữ nhật Vì tam giác ABC vng A nên ABCD hình chữ nhật BD AC xD xD D 6;3 yD yD d.)Tìm tọa độ điểm E biết tam giác ACE có độ dài cạnh AE = độ dài cạnh CE điểm 0.25 0.75 điểm số nguyên Ta có: AC AE CE AC AE CE 0.25 Mà CE nguyên nên CE = 2 AE x 3 y 2 Suy điểm E thỏa: 2 CE x 2 y 7 49 0.25 x y x y 14 18 y x 5 2y2 42 y 52 11 5 y x 5 0.25 18 14 E ; 5 Vậy tọa độ điểm E là: 11 E ; 5 0.25 ...ĐÁP ÁN TỐN 10 – KI? ??M TRA HỌC KÌ – 2 019 -2020 – ĐỀ A Câu 1 điểm Tìm tập xác định hàm số sau: a.) Điều ki? ??n: TXĐ : D = R\{ 0.5 } b.) 0.5 Điều ki? ??n: Câu Giải phương trình hệ phương... ? ?1 2x ? ?1 2x y 2x ? ?15 x 9x y 2x x y ? ?1 x y 5 c.) x 3x 5x2 11 x Điều ki? ??n: x 0.5 0.25 x x 11 ... 11 5 y x 5 0.25 18 14 E ; 5 Vậy tọa độ điểm E là: 11 E ; 5 0.25 SỞ GD & ĐT TP HỒ CHÍ MINH Trường TH, THCS THPT TRƯƠNG VĨNH KÝ ĐỀ KI? ??M TRA