Đề thi và đáp án học sinh giỏi môn toán lớp 12 trường trung học phổ thông Thống Nhất

10 749 5
Đề thi và đáp án học sinh giỏi môn toán lớp 12 trường trung học phổ thông Thống Nhất

Đang tải... (xem toàn văn)

Thông tin tài liệu

Đề thi và đáp án học sinh giỏi môn toán lớp 12 trường trung học phổ thông Thống Nhất

Sở GD-ĐT Thanh Hóa Trờng THPT Thống Nhất Đề Thi học sinh giỏi Lớp 12 Môn: Toán Thời gian: 180 Phút Giáo viên ra đề : Trịnh Văn Hùng Bài 1 : (4điểm ) Cho đờng cong ( C m ) : mx2 1mx y x 2 + ++ = ( m là tham số |m | 2) Tìm các điểm trên trục hoành mà từ đó vẽ đợc hai tiếp tuyến với đờng cong (C m ) mà chúng vuông góc vơí nhau. (Giải tích - Toán nâng cao 12 Tác giả Phan Huy Khải ) b) Cho I n = dx 1 1 0 x nx e e + với n là số tự nhiên Tìm I lim n n + ( Toán nâng cao lớp 12 Phan Huy Khải ) Bài 2: (4 Điểm ) a) Giải biện luận phơng trình sau theo tham số a 1x + - xa =1 ( Toán bồi dỡng học sinh : nhóm tác giả Hàn Liên Hải , Phan Huy Khải ) b) Giải bất phơng trình 4x2 + - 2 x2 > 16 8x12 x9 2 + ( Toán bồi dỡng học sinh : nhóm tác giả Hàn Liên Hải , Phan Huy Khải ) Bài 3 ( 4điểm ) a)Giải Phơng trình :2sin(3x+ 4 ) = x2x2sin81 cos 2 + b) Tam giác ABC có các góc thõa mãn : 2sinA+ 3sinB+4sinC = 5cos 2 A +3cos 2 B +cos 2 C Chứng minh rằng : tam giác ABC là tam giác đều . ( Báo Toán học tuổi trẻ 5/2004) Bài 4 (4điểm) : a)Cho n là số nguyên dơng , hãy tìm giới hạn A = )1x( 1nnx x lim 2 n 1x + ( Toán bồi dỡng học sinh : nhóm tác giả Hàn Liên Hải , Phan Huy Khải ) b) Giải hệ phơng trình = + + = loglog loglog )x3( 2 3y 2 )y3( 2 3x 2 (Đại số sơ cấp tác giả Trần Phơng) Bài 5 ( 4điểm) : a) Cho hình chóp SABCD đáy ABCD là hình thang có cạnh AD =2 BC. Gọi M,N là hai trung điểm của SA , SB tơng ứng .Mặt phẳng (DMN ) cắt SC tại P. Tính tỉ số điểm P chia đoạn thẳng CS . ( Toán bồi dỡng học sinh : nhóm tác giả Hàn Liên Hải , Phan Huy Khải ) b) Cho a,b,c là các số thực lớn hơn 2 Chứng minh rằng : log a 2 cb+ + log b 2 ca+ + log c 2 ba + 3 ( Các phơng pháp chứng minh bất đẳng thức ,tác giả Trần Phơng) Hết Đáp án Câu 1 Gọi M(x 0 ;0 ) là điểm cần tìm . Đờng thẳng ( )qua M có hệ số góc k có phơng trình y= k( x-x 0 ) Để( ) là tiếp tuyến của đờng cong thì phơng trình sau có nghiệm kép (0,5đ) )xx(k mx2 1mxx 0 2 = + ++ ( 1- 2k) x 2 +(m+2kx 0 -mk)x +1+mkx 0 =0 có nghiệm kép =++ 0)mkx1)(k21(4]m)mx2(k[ 0k21 0 2 0 (I ) =+++ )3(04m)mx2(k4)mx2(k )2( 2 1 k 0 22 Bài toán trở thành tìm điều kiện để (I) có hai nghiện phân biệt k 1 , k 2 và k 1 .k 2 = -1 (0,5đ) thay (2) vào (3) ta có : (2x 0 -m) 2 +m 2 + 12 0 (4) Vì (4) đúng nên hệ (I) (3) Điều kiện cần tìm là : =+ = + + 22 0 0 2 0 2 0 m4)mx2( 2 m x 1 )mx2( 4m 0mx2 ( 2x 0 +m) 2 = 4-m 2 ( vì m 2) (5) Nếu m > 2 thì (5) vô nghiệm Nếu m < 2 thì (5) có hai nhghiệm cần tìm với x 0 = 2 m4m 2 Vậy có hai điểm M(x 0 ;0) cần tìm với x 0 = 2 m4m 2 (0,5đ) b) Ta có x ( 0;1) thì : x nx e1 e + > x x)1n( e1 e + + I n > I n+1 Mặt khác vì x nx e1 e + > 0 x (0;1) I n >0 n Vậy {I n } là dãy đơn điệu giảm bị chặn dới , nên tồn tại n n Ilim (0,5đ) Ta có I n + I n+1 = dx 1 e 1 0 x )xn( nx e e + + + = dxe 1 0 x)1n( = - [ ] 1e 1n 1 )1n( I n = n1 1e n1 - I n-1 (*) (0,5đ) Rõ ràng : n n Ilim = 1n n Ilim n1 1e lim n1 n + =0 nên từ (*) suy ra 2 n n Ilim + = 0 n n Ilim + = 0 (0,5đ) Bài 2: a) Giải biện luận phơng trình theo tham số a: 1x + - xa =1 = +=+ xa2ax2 ax xa11x 0xa =+= )4(0a4a)1a(4)x(f )3( 2 a x )2(ax 2 2 x4 (0,5đ) Ta xét các trờng hợp sau: +) Nếu a < 0 khi đó 2 a > a nên hệ (2) (3) (4) vô nghiệm tức là (1) vô nghiệm +) Nếu a=0 thì hệ (2), (3), (4) có nghiệm duy nhất x=0 +) Nếu a >0 thì ta có += )4(a4ax)1a(4x4f )5(ax 2 a 22 )x( Xét tam thức f (x) có f ( 2 a ) = -2a < 0 f (a) = a 2 > 0 Vậy theo định lí đảo (4) có hai nghiệm x 1 ,x 2 thoã mãn x 1 < 2 a < x 2 < a (1đ) Kết luận +) Nếu a < 0 thì (1) vô nghiệm +) Nếu a 0 thì (1) có nghiệm duy nhất x= 2 1a21a ++ (0,5đ) b) Giải bất phơng trình 4x2 + - 2 x2 > 16 8x12 x9 2 + (1) Nhân biểu thức liên hợp vế trái ta có ( Với x [-2;2] ) 16x9 )4x6(2 x224x2 4x6 2 + > ++ (0,5đ) 0x282x8)(x282x)(2x3( 0x281632x8x9)(2x3( 0]x224x2(216x9)[2x3( 22 22 2 >++ >+ >+++ (0,5đ) Do 8+x+2 0x28 2 > nên (2) (3x-2) (x-2 0)x28 2 > < < 2x 3 24 3 2 x2 Tập nghiệm của bất phơng trình T = [ -2; 3 2 )( 3 24 ; 2] (1đ) Bài 3 ( 4điểm ) a)Giải Phơng trình :2sin(3x+ 4 ) = x2x2sin81 cos 2 + += + + )3(x2cosx2sin81) 4 x3(sin4 )2(0) 4 x3sin( 22 (0,5đ) Giải (2): (2) 2[1-cos(6x + 2 ) ] = 1+ 8sin2x(1-sin 2 2x) 2+ 2sin6x = 1+ 8sin 2x-8sin 3 2x 2+ 2(3sin2x-4sin 3 2x) = 1+8sin2x-8sin 3 2x sin2x = 2 1 + = + = 12 5 x k 12 x (k,lZ ) (0,5đ) +)Thay x= 12 + kả vào (2) ta có : VT (2) = sin( 0)k3 2 )1( k =+ khi k=2n ,n Z x= 12 + 2nả là nghiệm của (1). +) Thay x= + 12 5 vào (2) ta có : VT (2) = sin( )1( 1 )3 12 3 + =+ 0 khi l=2m-1;m Z x= + )1m2( 12 5 là họ nghiệm của (1) Vậy (1) có hai họ nghiệm : x= 12 + 2nả x= + )1m2( 12 5 ; (n,mZ) (1đ) b) Ta có sinA +sin B = 2 sin 2 BA + cos 2 C cos2 2 BA dấu ( = ) xảy ra khi chỉ khi 2 1 (sin A + sinB ) 2 C cos chỉ khi A = B (1) Tơng tự : 2 5 (sin B + sinC ) 2 A cos5 (2) 2 3 (sin C + sinA ) 2 B cos3 (3) (1đ) Từ (1), (2), (3), suy ra : 2sinA + 3sin B + 4 sin C 5cos 2 A +3cos 2 B +cos 2 C Đẳng thức xảy ra khi chỉ khi tam giác ABC đều. (1đ) Bài 4 : a)Cho n là số nguyên dơng , hãy tìm giới hạn A = )1x( 1nnx x lim 2 n 1x + ta có x k -1 = (x-1)(1+x+x 2 + .+x k-1 ) (0,5đ) (0,5đ) 2 )1n(n )1n( 321 1x )]x x1( )1x(1)[1x( limA 1x )1x( )1x()1x( lim )1x( )nx xx1)(1x( limA 2n 1x 1n2 1x 2 1n2 1x =++++= +++++++ = +++ = ++++ = Vậy : A = 2 )1n(n (0,5đ) b) Giải hệ phơng trình = + + = loglog loglog )x3( 2 3y 2 )y3( 2 3x 2 y 3 )3y( 2 x 3 )3x( 2 )x3( 2 3y 2 )y3( 2 3x 2 log2loglog2log )1(2 ) loglog log1(2log +=+ += ++ + + += (1) Xét hàm số : f (t) = loglog t )3t( 22 2+ + với t(0; + ) đồng biến trên (0; + ) (0,5đ) (1) viết dới dạng f (x) = f (y) (I) )II( )3( )2( )log yx 3 x log1(2)3x( 2 = +=+ )4(43x 3x3x 3x3x)3( x.3 x x.4 )x.(4 2.4 2.4 2 4 3 log 3 log 4 1 4 3 log 2 2 3 log 2 x 2 log 2 3 log 2 x 3 log ) x 3 log1(2 =+=+ =+=+ =+=+ + Xét hàm số q (x) = x.3 x 4 3 log 4 3 log1 + trên (0;+ ) nghịch biến trên (0;+ ) (0,5đ) Nên (4) có nghiệm thì là nghiệm duy nhất , do g (1) =4 Vậy x=1 là nghiệm duy nhất của (4). Khi đó hệ (II) trở thành 1yx 1x yx == = = Vậy hệ phơng trình đã cho có nghiệm duy nhất x=y=1 (0,5đ) Bài5 : a) Đặt DA = a ; DC = b ; DS = c; Từ giả thiết ta đợc CB = 2 a vì P trên CS nên đặt: CP = x.CS M, N, P, D ở trên cùng mặt phẳng nên DM, DN, DP đồng phẳng ta có: DN = DM +DP (1) Vì M là trung điểm của SA nên: DM = 2 DADS + = 2 ac + (2) Vì N là trung điểm của SB nên: DN = 2 DBDS + = 2 2 a bc ++ = 4 a + 2 b + 2 c (3) Ta có: DP = DC + CP = b + xCS = b + x(c - b) DP = (1-x)b + xc (4) (0,5đ) Từ (1), (2), (3) (4) ta có: 4 a + 2 b + 2 c = 2 c + 2 a + b)x1( + xc 4 a + 2 b + 2 c = 2 a + (1-x) b + ( 2 + x) c =+ = = 2 1 x 2 2 1 )x1(b 4 1 2 = = = 3 1 x 4 3 2 1 Vậy P trên SC sao cho CP = 3 1 CS hay P chia đoạn thẳng CS theo tỉ số k=- 2 1 b) Ta có clnbln aln2 bcln aln2 )cbln( aln2 log 2 a cb + = + = + (0,5đ) Tơng tự : clnaln bln2 alog 2 b ac + + blnaln cln2 log 2 c ba + + VT (1) 2( bln+aln cln + cln+aln bln + cln+bln aln ) (0,5đ) Bổ đề Với x,y,z>0 thì y+z x + z+x y + y+x z 2 3 (*) Thật vậy (*) ( y+z x +1) + ( z+x y +1)+( y+x z +1) 2 3 +3 [ (y+z) +(z+x) +(x+y) ]. ( y+z 1 + z+x 1 + y+x 1 ) 9 (**) Theo Côsi thì (**) thoã mãn . (0,5đ) áp dụng bổ đề ta có : VT (1) 3 (ĐPCM) (0,5đ) Hết . Sở GD-ĐT Thanh Hóa Trờng THPT Thống Nhất Đề Thi học sinh giỏi Lớp 12 Môn: Toán Thời gian: 180 Phút Giáo viên ra đề : Trịnh Văn Hùng Bài 1 : (4điểm ) Cho đờng cong ( C m ) : mx2 1mx y x 2 + ++ = . + = + = 12 5 x k 12 x (k,lZ ) (0,5đ) +)Thay x= 12 + kả vào (2) ta có : VT (2) = sin( 0)k3 2 )1( k =+ khi k=2n ,n Z x= 12 + 2nả là nghiệm của (1). +) Thay x= + 12 5 vào (2) ta. sin( )1( 1 )3 12 3 + =+ 0 khi l=2m-1;m Z x= + )1m2( 12 5 là họ nghiệm của (1) Vậy (1) có hai họ nghiệm : x= 12 + 2nả và x= + )1m2( 12 5 ; (n,mZ) (1đ) b) Ta có sinA +sin B = 2 sin 2 BA + cos 2 C cos2 2 BA

Ngày đăng: 26/03/2014, 11:00

Từ khóa liên quan

Mục lục

  • C©u 1

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan