bài tập hình học không gian có đáp án
Trang 1CHUYÊN ĐỀ HÌNH HỌC KHÔNG GIAN 12 BIÊN SOẠN GV NGUYỄN TRUNG KIÊN 0988844088 CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG
Vấn đề1:Tính thể tích của khối chóp
Ø Hình chóp đều
Bài 1: Cho hình chóp đều SABC có cạnh đáy bằng a, mặt bên tạo với đáy một góc
(00 900)
ϕ <ϕ < Tính thể tích khối chóp SABC và khoảng cách từ đỉnh A đến mặt phẳng (SBC)
Bài 2: Cho hình chóp tam giác đều SABC có cạnh bên bằng a 7, góc tạo bởi 2 mặt phẳng (SBC) và (ABC) bàng 600 Tính thể tích khối chóp SABC theo a
Bài 3: Cho hình chóp tam giác đều SABC có chiều cao bằng a và góc SBC bằng 2ϕ Hãy tính thể tích khối chóp theo a và ϕ
Bài 4: Cho hình chóp tam giác đều SABC có khoảng cách từ đỉnh A đến mặt phẳng (SBC) bằng
a, góc tạo bởi SA và đáy là 600 Tính thể tích khối chóp theo a và α
Bài 5: Cho hình chóp tam giác đều SABC có góc hợp bởi cạnh bên và đáy là α Khoảng cách ngắn nhất giữa cạnh đáy và cạnh bên đối diện bằng a Tính thể tích của khối chóp
Bài 6: Cho tứ diện SABC có SA=SB=SC=a và thoả mãn ASBˆ =BSCˆ =CSAˆ =600 GỌi H là hình chiếu vuông góc của A lên mp(SBC)
1) Chứng minh rằng SH là phân giác của góc BSC
2) Tính thể tích khối tứ diện SABC
Bài 7: Cho hình chóp tứ giác đều SABCD có cạnh bên bằng a, góc hợp bởi mặt bên và đáy là
600 Tính thể tích của khối chóp đã cho
Bài 8: Cho hình chóp tứ giác đều SABCD có chiều cao h, góc ở đỉnh của mặt bên bằng 2α Tính thể tích của khối chóp
Bài 9: Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a, góc giữa cạnh đáy và mặt bên bằng ϕ(00 <ϕ<900)
1) Tính tan của góc giữa hai mp (SAB) và (ABCD) theo ϕ
2) Tính thể tích khối chóp SABCD theo a và ϕ
Bài 10: Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a, gọi SH là đường cao của hình chóp Khoảng cách từ trung điểm I của SH đến mặt bên (SBC) bằng b Tính thể tích khối chóp SABCD
Bài 11: Cho hình chóp tứ giác đều SABCD có cạnh bên bằng a và mặt chéo là tam giác vuông 1) CHứng minh các mặt bên của hình chóp là những tam giác đều
2) Tính thể tích khối chóp SABCD
3) Tính tan của góc ϕ tạo bời mặt bên và măt đáy của hình chóp
Bài 12: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh 2 3
3
a
, chiều cao bằng a và hai mặt chéo SAC và SBD cùng vuông góc với đáy
1) Chứng minh SABCD là hình chóp đều
2) Tính thể tích của khối chóp
3) Tính góc tạo bởi mặt bên và mặt đáy của hình chóp
Trang 2Ø Hình chóp có một cạnh bên vuông góc với đáy
Bài 1: Cho hình chóp SABCD có đáy ABCD là hình chữ nhật với AB=a, BC=2a Hai mặt bên SAB và SAD vuông góc với đáy, cạnh SC hợp với đáy một góc 600
1) Tình thể tích của khối chóp
2) Tính góc của hai mp (SBC) và (ABCD)
Bài 2: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, chiều cao SA Cạnh bên SB hợp với đáy một góc α
Bài 3: Cho tứ diện ABCD có 3 cạnh AB, AC, AD vuông góc với nhau theo từng đôi một và AB=a, AC=2a, AD=3a Hãy tính diện tích tam giác BCD theo a
Bài 4: Cho tứ diện SABC với SAB,SBC, SCA vuông góc với nhau theo từng đôi một và có diện tích tương ứng là 24cm2, 30cm2, 40cm2 Hãy tính thể tích của khối tứ diện đó
Bài 5: Cho hình chóp SABCD có đáy là hình chữ nhật với diện tích bằng 12 Hai mặt bên (SAB)
và (SAD) cùng vuông góc với đáy Các mặt bên (SBC) và (SCD) tạo với đáy lần lượt một góc là
300,600 Tính thể tích khối chóp SABCD
Bài 6: Cho đường tròn đường kính AB=2R nằm trong mp(P) và một điểm M nằm trên đường tròn đó sao cho ABM =ˆ 300 Trên đường thẳng vuông góc với (P) tại A lấy điểm S sao cho SA=2R Gọi H và K lần lượt là hình chiếu vuông góc của A trên SB và SM
1) Chứng minh rằng SB vuông góc với mp(AHK)
2) Gọi I là giao điểm của HK với (P) Hãy chứng minh IA là tiếp tuyến của đường trong đã cho
3) Tính thể tích của khối chóp SAHK
Bài 7: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA=a 2 Trên AD lấy điểm M thay đổi Đặt góc ACMˆ =α.Hạ SN vuông góc với CM 1) Chứng minh N luôn luôn thuộc một đường tròn cố định và tình thể tích tứ diện SACN theo a và α
2) Hạ AH vuông góc với SC và AK vuông góc với SN Chứng minh rằng SC vuông góc với mặt phẳng (AHK) và tính độ dài đoạn HK
Bài 8: Cho hình chóp SABC có đáy ABC là tam giác vuông tại C, AC=a, AB=2a, SA vuông góc với đáy Góc giữa mặt phẳng (SAB) và mặt phẳng (SBC) bằng 600 Gọi H, K lần lượt là hình chiếu của A lên SB và SC Chứng minh rằng AK vuông góc với HK và tính thể tích khối chóp SABC
Ø Hình chóp có 1 mặt bên vuông góc với đáy:
Bài 1: Cho hình chóp SABC có đáy ABC là tam giác vuông tại B và BACˆ =α Mặt bên SAB là tam giác đều cạnh a nằm trong mặt phẳng vuông góc với đáy Tính thể tích của khối chóp SABC
Bài 2: Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại đỉnh A, AB=AC=a Mặt bên qua cạnh huyền BC vuông góc với mặt đáy , hai cạnh bên còn lại đều hợp với mặt đáy các góc bằng nhau và bằng 600 Hẫy tính thể tích của khối chóp SABC
Bài 3: CHo hình chóp SABC có đáy ABC là tam giác vuông tại A và ABCˆ =α, SBC là tam giác đều cạnh a và hai mặt phẳng (SAB) và (ABC) vuông góc với nhau Tính thể tích của khối chóp SABC
Bài 4: Cho hình chóp SABC có đáy ABC là tam giác cân với AB=AC=a Mặt bên (SBC) vuông góc với mặt đáy (ABC) và SA=SB=a
1) Chứng minh rằng tam giác SBC là tam giác vuông
2) Cho SC=x Tính thể tích của khối chóp theo a và x
Trang 3Bài 5: Cho hình chóp SABCD có đáy là hình vuông cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy Gọi M,N,P lần lượt là trung điểm của các cạnh
SB,BC,CD Chứng minh AM vuông góc với BP và tính thể tích của khối tứ diện CMNP
Bài 6: Cho hình chóp SABCD có đáy là hình vuông cạnh a Mặt bên SAB là tam giác cân tại S
và nằm trong mặt phẳng vuông góc với đáy Gọi O là tâm của đáy, I là trung điểm của AB Góc hợp bởi SC và đáy là α
1) Tính thể tích của khối chóp SABCD
2) Tính thể tích khối tứ diện SOCD
3) Tính khoảng cách từ I đến mặt bên (SCD) Suy ra thể tích khối tứ diện SICD
Bài 3: Cho hình chóp SABCD có đáy ABCD là hình bình hành với AB=a, BC=a 3 Góc giữa các cạnh bên và mặt đáy của hình chóp đều bằng 600 Tính thể tích của khối chóp đã cho
Bài 4: Cho tứ diện ABCD có BC= 6
ta lấy điểm S sao cho SB=a
1) Chứng minh rằng tam giác ASC là tam giác vuông
2) Tính thể tích của khối chóp SABCD
3) Chứng minh rằng hai mặt phẳng (SAB) và (SAD) vuông góc với nhau
Bài 6: Cho hình chóp SABC có cạnh SA=a và SB+SC=3a Góc BACˆ =900 và
0
BSC=CSA=ASB= Tính thể tích khối chóp đã cho theo a
Bài 7: Tính thể tích khối chóp SABC biết SA=a, SB=b, SC=c,ASBˆ =600BSCˆ =90 ,0 CSAˆ =1200
Bài 8: Cho hai đoạn thẳng AB và CÁCH ĐềU ĐIểM chéo nhau, AC là đường thẳng vuông góc chung của chúng Biết rằng AC=h, AB=a, CD=b và góc giữa hai đường thẳng AB và CD bằng
600 Hãy tính thể tích của khối tứ diện ABCD
Bài 9: Cho hình chóp SABC có AB=5a, BC=7a, AC=8a Các mặt bên tạo với mặt đáy các góc bằng nhau và bằng 600 Tính thể tích của khối chóp
Bài 10: Cho hình chóp SABCD có đáy ABCD là hình thoi, góc nhọn BAD=600, bán kính đường tròn ngoại tiếp là r Các mặt bên tạo với đáy những góc bằng nhau và góc giữa hai mặt bên đối diện là α Tính thể tích của khối chóp theo r và α
Ø Tính thể tích của khối chóp tạo bởi thiết diện của một mặt phẳng và khối chóp cho trước
Bài 1: Cho hình chóp SABC có đường cao SA=a, đáy là tam giác vuông cân có AB=BC=a Gọi B’ là trung điểm của SB và C’ là chân đường cao hac từ A của tam giác SAC
1) Chứng minh rằng SC vuông góc với mp(AB’C’)
2) Tính thể tích của khối chóp SAB’C’
Trang 4Bài 2: Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a, mặt bên tạo với đáy một góc 600 Mặt phẳng (P) chứa cạnh AB và tạo với đáy một góc 300 cắt SC, SD lần
lượt tại M, N
1) Tính theo a tứ diện tứ giác ABMN
2) Tính thể tích khối chóp SABMN theo a
Bài 3: Cho hình chóp đều SABCD có cạnh đáy bằng 2a và cạnh bên SA=a 5 Một mặt phẳng (P) chứa AB và vuông góc với mặt phẳng (SCD), cắt SC và SD lần lượt tại C’ và D’
1) Tính diện tích tứ giác ABC’D’
2) Tính thể tích hình đa diện ABCDD’C’
Bài 4: Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc
45 <α <90
1) Tính thể tích của khối chóp theo a và α
2) Gọi (P) là mặt phẳng qua A và vuông góc với cạnh SC cắt SB, SC, SD lần lượt tại B’, C’, D’ Hãy tính diện tích thiết diện AB’C’D’
Bài 5: Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a, các cạnh bên hợp với đáy một góc
3α Dựng mp (P) đi qua AB và hợp với đáy một góc α cắt vSC và SD lần lượt tại C’ và D’ 1) Tính diện tích thiết diện ABC’D’ theo a và α
2) Tính thể tích khối chóp SABCD theo a và α
Bài 6: Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a, các mặt bên hợp với mặt đáy một gócα Dựng mặt phẳng (P) đi qua AB hợp với đáy một góc
2
α cắt SB, SC lần lượt tại M và N Tính thể tích khối chóp SABMN theo a và α
Ø Tính thể tích của khối chóp bằng phương pháp tỉ số thể tích
Bài 1: Cho khối chóp SABC có đường cao SA=2ª, tam giác ABC vuông ở B có AC=2a,
0
BAC= Gọi H là hình chiếu của A trên SB Tính thể tích khối chóp HABC
Bài 2: Cho tam giác đều ABC cạnh a Trên đường thẳng vuông góc với mp tam giác tại tâm O
3
a
SO= Gọi M và N lần lượt là trung điểm của SB và SC
1) Tính góc giữa các đường thẳng AM và BC
2) Tính thể tích khối đa diện ABCNM
Bài 3: Cho hình chóp SABC có đường cao SA=2a, đáy ABC là tam giác vuông tại B có AB=2a, BC=a Gọi H là trung điểm của SB, K là chân đường cao hạ từ A của tam giác SAC Tính thể tích khối chóp SAHK
Bài 4: Cho hình chóp tam giác SABC có đáy ABC là tam giác đều cạnh a, SA=2ª và SA vuông góc với mp (ABC) Gọi M, N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB
và SC Tính thể tích khối chóp ABCNM
Bài 5: Cho hình chóp SABCD có đáy ABCD là hình thang, AB,BC=a, BADˆ =ABCˆ =900, AD=2a, SA vuông góc với đáy và SA=2a Gọi M, N lần lượt là trung điểm của SA, SD Chứng minh rằng BCNM là hình chữ nhật và tính thể tích của khối chóp SBCMN theo a
Bài 6: Cho hình chóp SABCD có đáy là hình vuông tâm O, cạnh a Cạnh bên SA vuông góc với đáy và SA=2a Gọi B’, D’ lần lượt là hình chiếu vuông góc của A trên SB và SD Mp (AB’D’) cắt SC tại C’ Tính thể tích của khối chóp SAB’C’D’
Trang 5Bài 7: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a Cạnh bên SC vuông góc với đáy và SC=2a Hai điểm M, N thuộc SB và SD sao cho SM SN 2
2) Tính diện tích tam giác SBC và suy ra khoảng cách từ A đến mp(SBC)
3) Tìm trên SA điểm M sao cho thiết diện MBC chia hình chóp thành hai phần có thể tích bằng nhau
Bài 2: Cho hình chóp SABCD có đáy ABCD là hình thoi có BD=a và góc BADˆ =2α Cạnh bên
SA vuông góc với đáy, mặt bên (SBC) hợp với đáy một góc α
1) Tính thể tích của khối chóp SABCD
2) Chứng minh mặt phẳng (SAC) chia hình chóp thành hai phần bằng nhau Tính khoảng cách từ A đến mp(SBC)
Bài 3: Cho hình chóp SABCD có đáy ABCD là hình chữ nhật với AB=a , AD=2a Cạnh SA vuông góc với đáy và SA=a Gọi M là điểm trên SA sao cho AM=x(0<x<a)
1) Mp(MBC) cắt hình chóp theo thiết diện là hình gì? Tính diện tích thiết diện đó
2) Xác định x để mặt phẳng (MBC) chia khối chóp ra làm hai phần có thể tích bằng nhau
Bài 4: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh bằng a, cạnh SA vuông góc với đáy và SA=a Mặt phẳng (P) đi qua CD và cắt các cạnh SA, SB lần lượt ở M, N Đặt
AM=x(0<x<a)
1) Tính diện tích tứ giác MNCD theo a và xz
2) Xác định giá trị của x để tính thể tích khói chóp SMNCD bằng 2/9 lần thể tích khối chóp SABCD
Bài 5: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, đường cao SA=a M là một điểm thay đổi trên SB, đặt SM =x(0<x<a 2) Mặt phẳng (ADM) cắt SC tại N
1) Tứ giác ADMN là hình gì? Tính diện tích của tứ giác này theo a và a
2) Mặt phẳng (ADM) chia hình chóp ra làm hai phần, một phần là hình chóp SADMN có thể tích V1 và phần còn lại có thể tích V2 Xác định giá trị của x để 1
2
54
V
V =
Ø Sử dụng tỉ số thể tích để chứng minh các hệ thức
Bài 1: Cho hình chóp SABC Gọi G là trọng tâm của tam giác ABC Mp(P) cắt SA, SB, SC SG
Vấn đề 2: Tính thể tích của khối lăng trụ
Ø Tính thể tích của khối lăng trụ đứng, lăng trụ đều
Bài 1: Cho lăng trụ đứng ABCA’B’C’ có cạnh bên bằng a, đáy ABC là tam giác vuông cân tại
A, cạnh BC=2a
1) Tính thể tích khối lăng trụ
Trang 62) Tính cosin của góc hợp bởi hai mp (CA’B’) và (ABC)
Bài 2: Cho lăng trụ đứng ABCA’B’C’ có đáy ABC là tam giác vuông với AB=BC=a, cạnh bên AA’=a 2 Gọi M là trung điểm của cạnh BC Tính theo a thể tích khối lăng trụ đã cho và khoảng cách giữa hai đường thẳng AM, B’C
Bài 3: Cho lăng trụ đứng ABCA’B’C’ có đáy ABC là tam giác vuông tại A, AC=a, ABCˆ =600 Đường chéo BC’ của mặt bên BCC’B’ tạo với mặt bên ACC’A’ một góc 300 Tính thể tích của khối lăng trụ đã cho
Bài 4: Cho lăng trụ tam giác đều ABCA’B’C’ có cạnh đáy bằng a, khoảng cách từ tâm Ocủa tam giác ABC đến mp (A’BC) bằng a/6 Tính thể tích của hình lăng trụ ABCA’B’C’ theo a
Bài 5: Cho lăng trụ tam giác đều ABCA’B’C’ có cạnh đáy bằng a, A’B vuông góc với AC’ Tính theo a thể tích của khối lăng trụ đã cho
Bài 6: Cho lăng trụ tứ giác đều ABCDA’B’C’D’ có chiều cao bằng a Mp (A’BD) hợp với mặt bên ABB’A’ một góc 600 Tính thể tích khối lăng trụ đã cho
Bài 7: Cho lăng trụ đứng ABCA’B’C’ có đáy ABC là tam giác vuông tại A Khoảng cách từ AA’ đến mặt bên BCC’B’ bằng khoảng cách từ C đến mặt phẳng (ABC’) và bằng a Mp(ABC’) hợp với đáy một góc 300 Tính thể tích khối lăng trụ đó
Bài 8: Cho lăng trụ tam giác đều ABCA’B’C’ Tam giác ABC’ có diện tích 8a2 3 và
mp(ABC’) hợp với đáy một góc 600 Tính thể tích của khối lăng trụ đã cho
Bài 9: Cho lăng trụ đứng ABCA’B’C’ có đáy ABC là tam giác cân đỉnh A Góc giữa AA’ và BC’ bằng 300 và khoảng cách giữa chúng bằng a Góc giữa hai mặt bên qua AA’ bằng 600 Tính thể tích của khối lăng trụ đã cho
Bài 10: Cho lăng trụ đứng ABCA’B’C’ có đáy ABC là tam Giác vuông với AB=AC=a,
AA’=a 2 Gọi M, N lần lượt là trung điểm của đoạn AA’ và BC’
1) Chứng minh MN là đường vuông góc chung của các đường thẳng AA’ và BC’
2) Tính thể tích tứ diện MA’BC’
Bài 11: Cho lăng trụ đứng ABCA’B’C’ có tất cả các cạnh đều bằng a M là trung điểm của đoạn AA’ Chứng minh BM vuông góc với B’C và tính khoảng cách giữa hai đường thẳng BM và B’C
Ø Tính thể tích của khối lăng trụ xiên
Bài 1: Cho lăng trụ ABCA’B’C’ có đáy ABC là tam giác đều cạnh a Hình chiếu của A’ trùng với tâm O của đáy ABC và A’O=a
1) Tính thể tích của khối lăng trụ
2) Tính góc hợp bởi mặt bên (BCC’B’) với mặt đáy (ABC)
Trang 7Bài 2: Cho hình lăng trụ ABCA’B’C’ có đáy ABC là tam giác vuông cân tại đỉnh A Mặt bên ABB’A’ là hình thoi cạnh a nằm trong mặt phẳng vuông góc với đáy Mặt bên (ACC’A) tạo với đáy một góc α Tính thể tích của khối lăng trụ
Bài 3: Cho lăng trụ ABCA’B’C’có đáy ABC là tam giác đều cạnh a Hình chiếu của A’ trùng với tâm O của đáy ABC và góc A’AB=450
1) Tính thể tích của khối lăng trụ
2) Tính diện tích xung quanh của lăng trụ
Bài 4: Cho lăng trụ ABCA’B’C’ có đáy ABC là tam giác đều nội tiếp đường tròn tâm O Hình chiếu của A’ trên mp(ABC) là O Khoảng cách giữa AA’ và BC là a và góc giữa hai mặt phẳng (ABB’A’) và (ACC’A’) bằng α Tính thể tích khối lăng trụ
Bài 5: Cho hình lăng trụ ABCA’B’C’ có đáy ABC là tam giác vuông tại A với AB=a,
BC=2aMặt bên ABB’A’ là hình thoi, mặt bên BCC’B’ nằm trong mặt phẳng vuông góc với đáy, hai mặt phẳng này hợp với nhau một gócα Tính thể tích khối lăng trụ đã cho
Bài 6: Cho thể tích lăng trụ ABCA’ B’ C’ có đáy ABC là tam giác đều Hình chiếu A’ trên mp(ABC) là trung điểm của BC Hai mặt bên qua AA’ vuông góc với nhau
1) Thiết diện thẳng là hình gì?
2) Tính thể tích khối lăng trụ, biết chu vi thiết diện thẳng là 2
Bài 7: Cho hình lăng trụ xiên ABCA’B’C’ có đáy ABC là tam giác đều tâm O Hình chiếu của A’ trên mp(ABC) là O Tính thể tính của khối lăng trụ biết khoảng cách từ O qua cạnh AA’ bằng
2α
Bài 8: Cho lăng trụ đứng ABCA’B’C’ có độ dài tất cả các cạnh đều bằng a và hình chiếu của đỉnh C trên mặt phẳng (ABB’A) là tâm của hình bình hành ABB’A’ Tính theo a thể tích khối lăng trụ đã cho
Bài 4: Cho lăng trụ đứng ABCDA’B’C’D’ có đáy ABCD là hình thoi cạnh a, góc BAD=600 Hình chiếu của đỉnh A’ trên đáy ABCD là giao điểm O của hai đường chéo của đáy Cho AA’=a
Trang 81) Tính góc hợp bởi cạnh bên và đáy hình hộp
2) Tính thể tích của khối hộp
Bài 5: Cho hình lăng trụ ABCDA’B’C’D’ có đáy ABCD là hình thoi cạnh a, góc BAD=600 Hình chiếu của đỉnh A’ trên đáy ABCD là tâm H của đường tròn ngoại tiếp tam giác ABD Cho biết góc BAAˆ =α Tính thể tích của khối lăng trụ
Bài 6: Cho khối hộp ABCDA’B’C’D’ có tất cả các cạnh đều bằng nhau và bằng a,
0
A AB=BAD=A AD= Hãy tính thể tích của khối hộp đã cho
Bài 7: Cho hình hộp ABCDA’B’C’D’ có các cạnh bằng a, góc BAD=600, góc BAA’=900, góc DAA’=1200 Tính theo a thể tích của khối hộp đã cho
Bài 8: Cho khối lăng trụ ABCA’B’C’ Mặt bên ABB’A’ có diện tích bằng 4 Khoảng cách giữa cạnh CC’ và mp(ABB’A’) bằng 7 Tính thể tích khối lăng trụ
Bài 9: Cho hình laapj phương ABCDA’B’C’D’ cạnh a Gọi O’ là tâm hình vuông A’B’C’D’ Tính thể tích của khối tứ diện A’O’BD
Bài 10: Cho hình lập phương ABCDA’B’C’D’ có cạnh bằng a Gọi M là trung điểm của cạnh AA’ Tính thể tích của khối tứ diện BCD’M theo a
Bài 11: Cho hình lập phương ABCDA’B’C’D’ có cạnh bằng a Chứng minh BD'⊥(A BC' ') và tính thể tích của khối đa diện có các đỉnh B’, A’, B, C’, D theo a
Ø Thiết diện của khối lăng trụ
Bài 1: Cho lăng trụ tam giác ABCA’B’C’ có các cạnh bên và cạnh đáy đều bằng a Hình chiếu vuông góc của đỉnh A lên mp(A’B’C) trùng với trung điểm I của cạnh B’C’
1) Tính diện tích thiết diện cắt hình lăng trụ bởi mp( )α chứa cạnh AA’ và vuông góc với
mp đáy A’B’C’ của hình lăng trụ
2) Chứng minh mặt bên BCC’B’ của hình lăng trụ là một hình vuông
Bài 2: Cho khối lập phương ABCDA’B’C’D’ cạnh a Các điểm E và F lần lượt là trung điểm của C’B’ và C’D’
1) Dựng và tính diện tích thiết diện của khối lập phương khi cắt bởi mp(AEF)
2) Tính tỉ số thể tích của hai phần khối lập phương bị chia bởi mp(AEF)
Bài 3: Cho lăng trụ tam giác đều ABCA’B’C’ có cạnh đáy bằng a, cạnh bên AA’=a 2 Gọi M,
N lần lượt là trung điểm của các cạnh AB và A’C’ và (P) là mp qua MN và vuông góc với
(BCC’B’) Tính diện tích thiết diện của (P) và lăng trụ
Trang 9Bài 4: Cho hình lập phương ABCDA’B’C’D’ cạnh bằng a Gọi M,N theo thứ tự là trung điểm của các cạnh AD, CD Lấy điểm P thuộc cạnh BB’ sao cho BP=3PB’ Tính diện tích thiết diện
do (MNP) cắt hình lập phương
Bài 5: Cho lăng trụ tam giác đều ABCA’B’C’ có cạnh đáy bằng a và cạnh bên AA’=2a Gọi I là trung điểm của AB, J là hình chiếu của I trên AC Xác định và tính diện tích của thiết diện tạo bởi lăng trụ với mp(IJC’)
Bài 6: Cho lăng trụ đứng ABCA’B’C’ có đáy ABC là tam giác vuông cân với AB=AC=a và cạnh bên AA’=a 2 Gọi M và N lần lượt là trung điểm của AB và BB’ Dựng và tính diện tích của thiết diện khi cắt lăng trụ bởi mp(C’MN)
Vấn đề 3: Các bài toán cực trị thể tích khối đa diện
Bài 1: Cho tứ diện SABC có cạnh SA vuông góc với mp(ABC), hai mp(SAB) và (SBC) vuông góc với nhau Cho biết SB=a 2,SBCˆ =45 ,0 ASBˆ =α(0<α <900)
1) Tính thể tích tứ diện SABC Với giá trị nào của α thì thể tích đó lớn nhất
2) Xác định α để góc giữa hai mp(SAC) và (SBC) bằng 600
Bài 2: Trong mp(P) cho đường thẳng ( )∆ và điểm A không thuộc( )∆ Trên đường thẳng vuông góc (P) tại A lấy S cố định khác A GócxAyˆ =900xoay quanh A, hai tia Ax, Ay cắt( )∆ tại B, C Cho SA=h và khoảng cách từ A đến ( )∆ bằng a Tính theo h và a thể tích nhỏ nhất của khối chóp SABC
Bài 3: Cho hình chóp tam giác SABC có SA=x, BC=y, các cạnh còn lại đều bằng 1
1) Tính thể tích khối chóp đã cho theo x và y
2) Tìm x, y để thể tích khối chóp đạt giá trị lớn nhất
Bài 4: Cho tam giác đều OAB có cạnh AB=a Trên đường thẳng d đi qua O và vuông góc với mp(OAB) lấy 1 điểm M với OM=x Gọi E, F lần lượt là hình chiếu vuông góc của A lên MB và
OB Đường thẳng EF cắt d tại N
1) CHứng minh rằng AN vuông góc với BM
2) Xác định x để thể tích tứ diện ABMN nhỏ nhất và tính giá trị nhỏ nhất đó
Bài 5: Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy Gọi H là trung điểm của AD và M là một điểm trên cạnh AB, K là hình chiếu vuông góc của S trên CM Đặt AM =x(0≤x≤a) Xác định x để thể tích của tứ diện SCHK đạt giá trị lớn nhất và tính giá trị lớn nhất này
Trang 10Bài 6: Cho hình vuông ABCD cócạnh bằng a, điểm M lưu động trên cạnh AD sao cho
CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN
Vấn đề 1: Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp
Bài 1: Cho hình chóp SABC có đáy ABC là tam giác vuông tại A Góc ABC=600, BC=a và SB vuông góc với mặt phẳng (ABC), SA tạo với đáy (ABC) một góc 450 Gọi E, F lần lượt là hình chiếu của B trên SA, SC
1) Tính thể tích của khối chóp SABC
2) Chứng minh A, B,C,E,F cùng thuộc một mặt cầu, xác định tâm và bán kính của mặt cầu
đó
Bài 2: Cho hai mặt phẳng (P) và (Q) vuông góc với nhau, có giao tuyến là đường thẳng∆ Trên
∆ lấy hai điểm A,B với AB=a Trong mặt phẳng (P) lấy điểm C, trong mặt phẳng (Q) lấy điểm
D sao cho AC, BD cùng vuông góc với∆ và AC=BD=AB Tính bán kính mặt cầu ngoại tiếp tứ diện ABCD và tính khoảng cách từ A đến mặt phẳng (BCD) theo a
Bài 3: Cho tam giác vuông cân ABC với AB=AC=a BB’ và CC’ cùng vuông góc với mặt phẳng (ABC), ở cùng một phía đối với mặt phẳng đó và BB’=CC’=a
1) Chứng minh rằng tam giác AB’C’ là tam giác đều
2) Tính thể tích của hình chóp có đỉnh là A và đáy là tứ giác BCC’B’
3) Chứng minh rằng năm điểm A,B,C,C’,B’ cùng nằm trên một mặt cầu
Bài 4: Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một gócϕ Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp
Bài 5: Cho hình chóp tam giác đều SABC có góc ở đỉnh của mặt bên bằng 2ϕ Gọi R=2a là bán kính đường tròn ngoại tiếp đáy ABC của hình chóp Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp SABC
Bài 6: CHo tứ diện đều ABCD có tâm mặt cầu ngoại tiếp là O và H là hình chiếu vuông góc của
A xuống mặt phẳng (BCD)
1) Tính tỉ số OA
OH