1. Trang chủ
  2. » Luận Văn - Báo Cáo

SKKN Hướng dẫn học sinh lớp 12 trường THPT Yên Định 3 giải nhanh bài toán trắc nghiệm cực trị của hàm số

26 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 0,92 MB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA TRƯỜNG THPT YÊN ĐỊNH SÁNG KIẾN KINH NGHIỆM HƯỚNG DẪN HỌC SINH LỚP 12 TRƯỜNG THPT YÊN ĐỊNH GIẢI NHANH BÀI TOÁN TRẮC NGHIỆM CỰC TRỊ CỦA HÀM SỐ Người thực : Phạm Thị Trang Chức vụ: Giáo viên SKKN thuộc mơn : Tốn THANH HĨA MỤC LỤC Nội dung Mở đầu 1.1 Lí chọn đề tài 1.2 Mục đích nghiên cứu 1.3 Đối tượng nghiên cứu 1.4 Phương pháp nghiên cứu Nội dung sáng kiến kinh nghiệm 2.1 Cơ sở lí luận sáng kiến kinh nghiệm 2.1.1 Khái niệm cực đại, cực tiểu 2.1.2 Điều kiện cần để hàm số đạt cực trị 2.1.3 Điều kiện đủ để hàm số đạt cực trị 2.1.4 Quy tắc tìm cực trị 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.3 Các giải pháp sử dụng để giải vấn đề 2.3.1 Dạng 1: Xác định điểm cực trị hàm số, điểm cực trị đồ thị hàm số cực trị hàm số 2.3.2 Dạng 2: Tìm điều kiện để hàm số có điểm cực trị điểm cực trị thỏa mãn điều kiện cho trước 2.3.3 Hệ thống tập vận dụng 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường 2.4.1 Đối với hoạt động giáo dục 2.4.2 Đối với thân, đồng nghiệp nhà trường Kết luận, kiến nghị 3.1 Kết luận 3.2 Kiến nghị Trang 1 1 3 3 4 4 16 18 18 19 19 19 19 MỞ ĐẦU 1.1 Lí chọn đề tài: Kì thi THPT quốc gia 2017 có số điểm so với năm học trước thí sinh phải làm thi tối thiểu, có thi bắt buộc Toán, Ngữ văn, Ngoại ngữ thi tự chọn KHTN (gồm môn Vật lí, Hố học, Sinh học) thi KHXH (gồm mơn Lịch sử, Địa lí, Giáo dục cơng dân) Trong đó, mơn tốn chuyển từ hình thức thi tự luận sang hình thức thi trắc nghiệm Thời gian làm mơn tốn 90 phút với 50 câu hỏi trắc nghiệm, tức trung bình câu làm 1,8 phút Với hình thức thi thời gian thi áp lực không nhỏ thí sinh, địi hỏi thí sinh phải chuẩn bị cho thân lượng kiến thức, kĩ định chiến thuật làm phù hợp có kết cao Trong chủ đề ‘‘Cực trị của hàm số’’ các tốn khơng khó, học sinh làm theo phương pháp thơng thường lâu nhiều thời gian, kể học sinh giỏi Thực tế giảng dạy cho thấy kĩ tính tốn em học sinh trường THPT n Định hạn chế, thiếu kinh nghiệm trình làm trắc nghiệm nên thường dẫn tới sai sót làm Để giúp em có số kinh nghiệm kỹ làm trắc nghiệm mơn tốn kỳ thi THPT quốc gia tới đạt hiệu hơn, tơi tìm hiểu nghiên cứu “Một số kinh nghiệm làm bài thi trắc nghiệm mơn tốn trong kỳ thi THPT quốc gia” (Dành cho ban bản) Mơn Tốn học trường phổ thơng mơn học khó, học sinh thường khơng học tốt mơn Nếu thi theo hình thức trắc nghiệm học sinh gặp nhiều khó khăn nội dung kiến thức thời gian làm Để giải trọn đề 50 câu thời gian 90 phút giải theo quy trình tự luận thời gian học sinh khơng làm hết câu hỏi Với mong muốn cho học sinh trường THPT Yên Định làm quen nhanh với dạng toán trắc nghiệm chọn nghiên cứu đề tài “Hướng dẫn học sinh lớp 12 trường THPT Yên Định giải nhanh toán trắc nghiệm cực trị hàm số’’ 1.2 Mục đích nghiên cứu: Giúp học sinh lớp 12 trường THPT Yên Định có thêm kiến thức kĩ việc giải toán liên quan tới cực trị hàm số Đề xuất số cách giải nhanh toán trắc nghiệm cực trị hàm số để giúp học sinh hình thành tư giải tốn trắc nghiệm, từ giải tốn trắc nghiệm dễ dàng Giúp nâng cao chất lượng dạy học phần cực trị hàm số giúp học sinh trường THPT n Định u thích mơn Tốn Nâng cao chất lượng dạy học môn 1.3 Đối tượng nghiên cứu: Đề tài vào nghiên cứu cách giải nhanh số toán trắc nghiệm phần cực trị hàm số (Giải tích 12 cơ bản)       Đối tượng áp dụng: Học sinh lớp 12 trường THPT Yên Định 3, Thanh Hóa 1.4 Phương pháp nghiên cứu: Trong đề tài sử dụng phương pháp nghiên cứu xây dựng sở lý thuyết Thông qua kiến thức sách giáo khoa, đưa số ý nhận xét quan trọng để học sinh từ giải nhanh toán trắc nghiệm Phương pháp điều tra khảo sát thực tế, thu thập thông tin : Tham khảo ý kiến giáo viên thăm dò ý kiến học sinh Phương pháp thống kê, xử lí số liệu : Thống kê xử lí số liệu kết học tập học sinh trước sau áp dụng sáng kiến 2 NỘI DUNG SÁNG KIẾN KINH NGHIỆM 2.1 Cơ sở lí luận sáng kiến kinh nghiệm: Học sinh phải nắm được: - Về kiến thức:  + Khái niệm điểm cực đại (điểm cực tiểu) gọi chung điểm cực trị hàm số, giá trị cực đại (giá trị cực tiểu) gọi chung cực trị hàm số, điểm cực đại (điểm cực tiểu) gọi chung điểm cực trị đồ thị hàm số + Điều kiện cần đủ để hàm số đạt cực trị - Về kĩ năng: + Học sinh biết vận dụng kiến thức học để tìm điểm cực trị hàm số, cực trị hàm số, điểm cực trị đồ thị hàm số + Vận dụng kiến thức học để giải nhanh toán cực trị hàm số 2.1.1 Khái niệm cực đại, cực tiểu: Định nghĩa: xác định liên tục khoảng (a ; b) (có thể a ; Cho hàm số b ) điểm a) Nếu tồn h cho với hàm số đạt cực đại b) Nếu tồn h cho với hàm số đạt cực tiểu Chú ý: - Nếu     đạt  cực đại (cực tiểu)      được gọi là  điểm cực đại (điểm cực tiểu) của hàm số ;  được gọi là giá trị cực đại (giá trị cực tiểu)  của hàm số, kí hiệu   , cịn điểm    được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số - Các điểm cực đại (điểm cực tiểu) được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn được gọi là cực đại (cực tiểu) và gọi chung là cực trị của hàm số 2.1.2 Điều kiện cần để hàm số đạt cực trị: Định lí 1: Giả sử hàm số f đạt cực trị điểm x0 Khi đó, f có đạo hàm x0 2.1.3 Điều kiện đủ để hàm số đạt cực trị: Định lí 2: Giả sử hàm số liên tục khoảng có đạo hàm K , với h > a) Nếu  trên khoảng  ( x0  h; x0 ) và  f(x)  Khi đó: a) Nếu , điểm cực tiểu; b) Nếu , điểm cực đại; 2.1.4 Quy tắc tìm cực trị: Quy tắc 1: Bước 1: Tìm tập xác định Bước 2: Tính Tìm điểm mà không xác định Bước 3: Xét dấu lập bảng biến thiên Bước 4: Từ bảng biến thiên suy cực trị hàm số Quy tắc 2: Bước 1: Tìm tập xác định Bước 2: Tính  Giải phương trình = kí hiệu xi (i = 1,2,3,, n) Bước 3: Tính Bước 4: Dựa vào dấu suy tính chất cực trị xi 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm: + Các năm trước chưa thi theo hình thức trắc nghiệm học sinh máy móc áp dụng theo giáo viên, năm 2017 Bộ giáo dục đào tạo tổ chức thi theo hình thức trắc nghiệm Với hình thức thi học sinh máy móc áp dụng bước đáp số nhiều thời gian khơng có thời gian cho câu khác + Kỹ tư phân tích giả thiết em học sinh hạn chế + Phần lớn học sinh lớp 12 trường THPT Yên Định kỹ tính tốn suy luận chưa cao nên gặp khó khăn tốn trắc nghiệm 2.3 Các sáng kiến kinh nghiệm giải pháp sử dụng để giải vấn đề Theo kinh nghiệm giảng dạy thân chia làm dạng để học sinh hiểu rõ nắm vững dạng, vận dụng cho tập khác 2.3.1 Dạng 1: Xác định điểm cực trị hàm số, điểm cực trị đồ thị hàm số cực trị hàm số Phương pháp chung: Để giúp học sinh làm tốt làm nhanh toán liên quan đến cực trị trước hết giáo viên cần giúp học sinh nắm vững kiến thức liên quan đến cực trị, cách tìm cực trị cách phân biệt điểm cực trị hàm số, điểm cực trị đồ thị hàm số cực trị hàm số Ngồi ra, đơi số tốn giáo viên hướng dẫn học sinh số cách loại đáp án sai tìm nhanh đáp án để khơng thời gian q nhiều có điểm cực trị là: Bài tập 1: Hàm số B A.  C D Giải Ta có: Ta thấy y’ khơng đổi dấu qua x = x = điểm cực trị hàm số Và y’ đổi dấu qua điểm cực trị hàm số Ta chọn đáp án C Nhận xét: - Nhiều học sinh khơng nắm vững lí thuyết sẽ chọn ngay đáp án A vì cứ nghĩ  nghiệm của phương trình y’ = 0 là điểm cực trị của hàm số - Ngồi ra học sinh cũng hay mắc phải sai lầm đó là chọn đáp án D điểm  cực trị của đồ thị hàm số Qua ta rút nhận xét: - Nếu x = x0 là điểm cực trị của hàm số y = f(x) thì f’(x0) = 0 hoặc f’(x0) khơng  xác định, nhưng nếu f’(x0) = 0 thì chưa hẳn x = x0 là điểm cực trị của hàm số  - Trong các bài tốn trắc nghiệm thường có các câu hỏi đánh lừa học sinh bởi các cụm từ “điểm cực trị hàm số điểm cực trị đồ thị hàm số”. Vì  vậy học sinh cần nắm vững lí thuyết để phân biệt được các khái niệm Bài tập 2: Hàm số sau khơng có cực trị A.  B D C Giải Cách giải thông thường: Với A: Ta thấy hàm bậc ba có y’ = 3x2 – , phương trình y’ = ln có hai nghiệm phân biệt nên hàm số có hai điểm cực trị (loại) Với B: Đây hàm bậc bốn có y’ = 4x3 – 12x2 + 3, phương trình bậc ba ln có nghiệm nên hàm số có điểm cực trị (loại) Với C: Đây hàm phân thức bậc bậc nên hàm số khơng có cực trị Do ta chọn đáp án C Nhận xét: Với một bài tốn u cầu tìm hàm số khơng có cực trị nếu ta xét từng đáp án thì mất rất nhiều thời gian. Đơi khi ta phải nhớ được một số kết quả đã biết. Ví dụ như trong bài tập 2 này nhìn vào bốn đáp án ta có thể chọn ngay đáp án C. Giáo viên có thể nhấn mạnh lại kiến thức cho học sinh ghi nhớ đó là: “Hàm phân thức bậc bậc khơng có cực trị” Mệnh đề sau đúng? Bài tập 3: Cho hàm số A Hàm số có điểm cực đại hai điểm cực tiểu B Hàm số có hai điểm cực đại điểm cực tiểu C Hàm số có điểm cực đại khơng có điểm cực tiểu D Hàm số có điểm cực đại điểm cực tiểu Giải Cách giải thơng thường: Ta có: ;  Vậy hàm số có hai điểm cực đại điểm cực tiểu Ta chọn đáp án B Nhận xét: Đối với hàm bậc bốn trùng phương có dạng  ta có  - Nếu ab > 0 thì hàm số có 1điểm cực trị x = 0 - Nếu ab  0 đồ thị hàm số có dạng chữ W nên hàm số có hai điểm cực tiểu và một điểm cực đại Dựa vào nhận xét ta giải tốn sau: Ta có: a = -1 < 0, b = , a.b < nên hàm số có hai điểm cực đại cực tiểu Ta chọn đáp án B     Ghi nhớ nhận xét trên giúp học sinh giải nhanh bài toán Bài tập 4: Cho hàm số  liên tục xác định có bảng biến thiên sau: x y +        + ’ -15 y Khẳng định sau khẳng định đúng: A Hàm số đạt cực đại x = đạt cực tiểu x = B Hàm số có điểm cực trị C Hàm số có giá trị cực tiểu D Hàm số có giá trị lớn giá trị nhỏ - 15 Giải Ta thấy y’ đổi dấu từ âm sang dương qua x = 0, x = cực tiểu hàm số, tương tự suy x = điểm cực đại hàm số.Từ loại A B D sai giá trị cực trị giá trị lớn nhất, giá trị nhỏ hàm số Vậy ta chọn đáp án C Nhận xét: Giá trị cực trị của hàm số chưa hẳn là giá trị lớn nhất và nhỏ nhất của hàm số đó Bài tập 5: Cho hàm số  có đạo hàm  Phát biểu sau A Hàm số có điểm cực đại B Hàm số có hai điểm cực trị C Hàm số có điểm cực trị D Hàm số khơng có điểm cực trị Giải Ta thấy Đến nhiều học sinh kết luận hàm số có hai điểm cực trị chọn đáp án B Tuy nhiên kết luận sai lầm, qua x = f’(x) khơng đổi dấu, với x Do hàm số có điểm cực trị x = Vậy ta chọn đáp án C Nhận xét: Trong đa thức, đa thức chỉ đổi dấu khi qua nghiệm đơn và nghiệm bội lẻ, cịn nghiệm bội chẵn khơng khiến đa thức đổi dấu.  Qua nhận xét ta chọn đáp án C Bài tập 6: Cho hàm số Tìm mệnh đề mệnh đề sau A Hàm số có điểm cực đại B Hàm số khơng có cực trị C Hàm số cho có đạo hàm không xác định x = nên không đạt cực trị x = D Hàm số cho có đạo hàm khơng xác định x = đạt cực trị x = Giải Ta có: Hàm số có đạo hàm khơng xác định x = ta thấy đáp án C D ngược nhau, nên ta loại trừ đáp án A B Ta thấy y’ đổi dấu từ âm sang dương qua x = , theo định nghĩa x = điểm cực trị hàm số Ta chọn đáp án D Nhận xét: - Với hàm liên tục thì hàm số sẽ đạt cực trị tại điểm làm cho y’ = 0 hoặc  khơng xác định - Nếu hàm số đạt cực trị tại x = x0 thì x = x0 sẽ làm cho y’ bằng 0 hoặc khơng xác định 2.3.2 Dạng 2: Tìm điều kiện để hàm số có điểm cực trị điểm cực trị thỏa mãn điều kiện cho trước Phương pháp chung: Với kinh nghiệm giảng dạy thân rút số nhận xét sau đây: *) Đối với hàm phân thức bậc bậc : Khơng có cực trị *) Đối với hàm đa thức bậc ba Ta có: - Để hàm số có hai điểm cực trị thì phương trình y’=0 có hai nghiệm phân biệt  - Để hàm số khơng có điểm cực trị thì phương trình y’=0 vơ nghiệm hoặc có nghiệm kép Qua ta rút kết quả: Đồ thị hàm đa thức bậc ba hoặc là có hai điểm cực trị hoặc là khơng có điểm cực trị nào Bài tập 1: Với giá trị m hàm số đạt cực đại x = A.  B C D Giải Ta có : Điều kiện để hàm số đạt cực đại x = Vậy chọn đáp án C Nhận xét: Nhiều học sinh mắc sai lầm trong bài tập này đó là chỉ thay x =1 vào phương trình y’ = 0 suy ra giá trị m cần tìm là m = 1 và m = -3. Khi đó học sinh sẽ chọn đáp án A và khơng suy nghĩ gì đến đáp án C Qua ta có: - Để hàm số đạt cực đại tại x0 thì  - Để hàm số đạt cực tiểu tại x0 thì  Bài tập 2: Tìm tất giá trị thực tham số m để hàm số đạt cực tiểu x = - A.  B C D Giải: Ta có Để hàm số đạt cực tiểu x = -2 thì   Vậy ta chọn đáp án D Bài tập 3: Tìm tất giá trị thực tham số m cho hàm số có hai điểm cực trị A.  B C D Giải: Ta có Vậy phương trình đường thẳng qua hai điểm cực trị đồ thị hàm số y = Ax + B Bài tập vận dụng:  giả sử đồ thị hàm số có hai Bài tập 6: Cho hàm số điểm cực trị Tìm đường thẳng qua hai điểm cực trị đồ thị hàm số cho A.  B C D Giải Ta có :  Thực phép chia y cho y’ ta Vậy phương trình đường thẳng qua điểm cực trị đồ thị hàm số  Ta chọn đáp án A Ngồi tơi xin giới thiệu cách bấm máy tính (sử dụng cho máy Casio fx –  570 ES PUSL) để tìm nhanh phương trình đường thẳng qua hai điểm cực trị đồ thị hàm số bậc ba sau: Bước 1: Xác định y’, y’’ Bước 2: Chuyển máy tính sang chế độ tính tốn số phức MODE 2:CMPLX Nhập biểu thức (Cơng thức này học sinh thừa nhận do khn khổ  của sáng kiến tơi xin phép khơng giới thiệu vào sáng kiến) Chú ý: Với bài tốn khơng chứa tham số thì ta sử dụng biến X trong máy, tuy  nhiên nếu bài tốn chứa tham số ta có thể sử dụng biến bất kì trong máy để biểu thị cho tham số đã cho, ta quy ước biến M  Bước 3: Gán giá trị Ấn CALC Gán X với i , gán M với 100 Lúc máy tính xuất kết quả, ta tách hệ số i để đưa kết cuối Ví dụ như hai bài tập 5 và 6 ở trên: Bài tập 5: Phương trình đường thẳng qua hai điểm cực trị đồ thị hàm số A.  B C D Ta dùng máy tính bấm sau: Bước 1: Xác định Bước 2: Chuyển máy tính sang chế độ tính tốn số phức MODE 2:CMPLX 10 Nhập biểu thức Bước 3: Gán giá trị Ấn CALC Gán X với i , gán M với 100 Khi máy tính xuất Vậy phương trình qua hai điểm cực trị đồ thị hàm số cho  Vậy đáp án ta chọn A  giả sử đồ thị hàm số Bài tập 6: Cho hàm số có hai điểm cực trị Tìm đường thẳng qua hai điểm cực trị đồ thị hàm số cho A.  B C D Giải Ta có : Bước 1: Xác định Bước 2: Chuyển máy tính sang chế độ tính tốn số phức MODE     2:CMPLX Nhập biểu thức Bước 3: Gán giá trị Ấn CALC Gán X với i , gán M với 100 Khi máy tính xuất Ta thấy Vậy phương trình đường thẳng qua hai điểm cực trị đồ thị hàm số cho  Vậy đáp án ta chọn A Nhận xét: Đơi khi việc sử dụng máy tính thuận lợi và nhanh hơn giải theo cách thơng thường. Với hình thức thi mới này học sinh khơng những nắm vững và rộng kiến thức mà cịn phải có kĩ năng sử dụng máy tính thành thạo để tránh mất thời gian làm bài Bài tập 7: Xác định tất giá trị m để hai điểm cực trị đồ thị hàm sau đối xứng qua đường thẳng B C.  D.  A Giải: Ta có Để hàm số có hai điểm cực trị có hai nghiệm phân biệt Sử dụng máy tính cầm tay học sinh dễ dàng tìm phương trình đường thẳng qua hai điểm cực trị 11 Thông thường học sinh sẽ giải tiếp như sau: Gọi x1, x2 hai điểm cực trị hàm số Theo định lí vi-et ta có Khi hai điểm cực trị đồ thị hàm số Tọa độ trung điểm I M1M2 I(1; m - 2) Để hai điểm cực trị đồ thị hàm số đối xứng qua đường thẳng Vậy đáp án chọn A Nhận xét: Cách làm trên đúng và cho kết quả nhưng nếu bài tốn trắc nghiệm thì lại mất rất nhiều thời gian. Ta có thể sử dụng nhận xét sau để có thể rút ngắn thời gian làm bài        Chương trình cơ bản khơng đề cập tới khái niệm “điểm uốn” nhưng đối với bài thi trắc nghiệm thì ta có thể ghi nhớ để dùng khi cần        Điểm uốn của đồ thị hàm số bậc ba là điểm có hồnh độ thóa mãn y’’ = 0 và nằm trên đồ thị đó        Đồ thị của hàm số bậc ba nhận điểm uốn làm tâm đối xứng. Gọi I là điểm uốn của đồ thị hàm số bậc ba, khi đó  với  là đường thẳng mà hai điểm cực đại và điểm cực tiểu của đồ thị hàm số đối xứng nhau qua đường thẳng đó, d là đường thẳng đi qua hai điểm cực trị.        Quay trở lại với bài tốn trên ta có thể làm như sau: Ta có  Tọa độ điểm uốn I(1; m-2) Để hàm số có hai điểm cực trị có hai nghiệm phân biệt Sử dụng máy tính cầm tay học sinh dễ dàng tìm phương trình đường thẳng qua hai điểm cực trị Theo nhận xét ta có : Vậy ta chọn đáp án A *) Đối với hàm đa thức bậc bốn trùng phương Ta có: 12 Nhận xét: - Hàm đa thức bậc bốn trùng phương ln có điểm cực trị - Số điểm cực trị của hàm số phụ thuộc vào số nghiệm của phương trình (1) +) Để hàm số có ba điểm cực trị thì phương trình y’=0 có ba nghiệm phân biệt +) Để hàm số có 1 điểm cực trị thì phương trình (1) hoặc vơ nghiệm hoặc có một nghiệm kép x = 0  - Nếu ab đồ thị hàm số có dạng chữ W nên hàm số có hai điểm cực tiểu điểm cực đại Bài tập 1: Tìm tất giá trị thực tham số m cho hàm số có điểm cực trị A.  B C D Giải: Để hàm số có điểm cực trị Ta chọn đáp án A Bài tập 2: Tìm tất giá trị thực tham số m cho hàm số có hai điểm cực tiểu điểm cực đại B A.  C D Giải: 13 Áp dụng nhận xét phần trước: Để hàm số có điểm cực tiểu điểm cực Ta chọn đáp án D đại Nhận xét: - Nếu chưa rút nhận xét phần trước học sinh phải trình bày dài để tìm điều kiện thõa mãn u cầu tốn - Vì học sinh phải ghi nhớ cơng thức để làm tốn cách nhanh    Sau đây dựa vào một số nhận xét ở trên tơi xin đưa ra một số dạng bài tốn  tổng qt cho học sinh hiểu và ghi nhớ cơng thức để làm bài thi trắc nghiệm tốt  Bài tốn 1: Tìm điều kiện để đồ thị hàm số có ba điểm cực trị tạo thành tam giác vng Giải: Với ab 

Ngày đăng: 25/12/2022, 11:01

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w