1. Trang chủ
  2. » Giáo án - Bài giảng

Chuyên Đề 03 khảo sát hàm số và vẽ đồ thị hàm số

100 1,9K 3

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 100
Dung lượng 5,06 MB

Nội dung

Chuyên Đề 03 hàm số và các bài tóan liên quan

LUYỆN THI ĐẠI HỌC MÔN TOÁN – Thầy Hùng Chuyên đề Hàm số Tham gia khóa TOÁN 2014 để đạt 9 điểm Toán – www.moon.vn facebook: LyHung95 – fanpage: Hungdv95 I. SỰ BIẾN THIÊN CỦA HÀM SỐ Dạng 1. Sự biến thiên của hàm không có tham số  Phương pháp: + Tìm tập xác định của hàm số. + Tính ' y giả i ph ươ ng trình ' 0 y = để tìm các nghi ệ m. + L ậ p b ả ng bi ế n thiên (ho ặ c ch ỉ c ầ n b ả ng xét d ấ u ' y ) k ế t lu ậ n trên c ơ s ở các đ i ể m t ớ i h ạ n.  Chú ý: Quy t ắ c xét d ấ u c ủ a hàm đ a th ứ c phân th ứ c.  Các ví d ụ đ i ể n hình: Ví dụ 1: Xét s ự bi ế n thiên c ủ a các hàm s ố sau đ ây: a) 3 2 2 3 1. y x x = − + + b) 3 2 3 3 1. y x x x = − + + c) 4 2 2 1. y x x = − − d) 2 5 4 3 1 1 2 1. 5 4 2 x y x x x x = − − + + − Lời giải: a) 3 2 2 3 1. y x x = − + +  T ậ p xác đị nh: D = R.  Đạ o hàm: ( ) ( ) 2 0 6 6 6 1 0 6 1 0 1 x y x x x x y x x x =  ′ ′ = − + = − − → = ⇔ − − = ⇔  =   Bảng xét dấu của đạo hàm: x −∞ 0 1 +∞ ' y − 0 + 0 − V ậy hàm số đồng biến trên (0; 1) nghịch biến trên (−∞; 0) (1; +∞). b) 3 2 3 3 1. y x x x = − + +  Tập xác định: D = R.  Đạo hàm: ( ) 2 2 3 6 3 3 1 0 0, . y x x x y x D ′ ′ = − + = − ≥ → ≥ ∀ ∈ V ậ y hàm s ố đ ã cho luôn đồ ng bi ế n trên t ậ p xác đị nh. c) 4 2 2 1 y x x = − −  T ậ p xác đị nh: D = R.  Đạ o hàm: ( ) ( ) 3 2 2 0 4 4 4 1 0 4 1 0 1 x y x x x x y x x x =  ′ ′ = − = − → = ⇔ − = ⇔  = ±   B ả ng xét d ấ u c ủ a đạ o hàm: x −∞ −1 0 1 +∞ ' y − 0 + 0 − 0 + Hàm s ố đồ ng bi ế n trên (−1; 0) (1; +∞); hàm s ố ngh ị ch bi ế n trên (−∞; −1) (0; 1). d) 2 5 4 3 1 1 2 1. 5 4 2 x y x x x x = − − + + −  T ậ p xác đị nh: D = R.  Đạ o hàm: ( ) ( )( ) 2 4 3 2 1 3 2 1 1 2 0 1 2 x y x x x x x x x y x x = −   ′ ′ = − − + + = + − − → = ⇔ =   =  Do ( ) 2 1 0, x x + ≥ ∀ nên d ấ u c ủ a ' y ch ỉ ph ụ thu ộ c vào bi ể u th ứ c (x − 1)(x − 2). Tài liệu bài giảng: KHẢO SÁT VẼ ĐỒ THỊ HÀM SỐ  P1 Thầy Đặng Việt Hùng LUYỆN THI ĐẠI HỌC MÔN TOÁN – Thầy Hùng Chuyên đề Hàm số Tham gia khóa TOÁN 2014 để đạt 9 điểm Toán – www.moon.vn facebook: LyHung95 – fanpage: Hungdv95  Bảng xét dấu của đạo hàm: x −∞ −1 1 2 +∞ ' y + 0 + 0 − 0 + Hàm s ố đồ ng bi ế n trên ( −∞ ; 1) (2; + ∞ ); hàm s ố ngh ị ch bi ế n trên (1; 2). Ví dụ 2: Xét s ự bi ế n thiên c ủ a các hàm s ố cho d ướ i đ ây: a) 1 . 2 2 x y x + = − b) 2 3 3 . 1 x x y x + + = + c) 2 1 . 1 y x x = − + + d) 2 2 2. y x x = − + e) 2 2 . y x x = − f) 2 1 . 3 2 x y x + = − Lời giải: a) 1 . 2 2 x y x + = −  T ậ p xác đị nh: { } \ 1 . D R=  Đạ o hàm: ( ) 2 4 0, 2 2 y x D x − ′ = > ∀ ∈ → − hàm s ố luôn đồ ng bi ế n trên t ậ p xác đị nh. b) 2 3 3 . 1 x x y x + + = +  T ậ p xác đị nh: { } \ 1 . D R = −  Đạ o hàm: ( ) ( ) ( ) ( ) 2 2 2 2 2 0 2 3 1 3 3 2 0 2 0 2 1 1 x x x x x x x y y x x x x x = + + − − −  + ′ ′ = = → = ⇔ + = ⇔  = − + +   B ả ng xét d ấ u c ủ a đạ o hàm: x −∞ −2 −1 0 +∞ ' y + 0 − || − 0 + Hàm s ố đồ ng bi ế n trên (−∞; 2) (0; +∞); hàm s ố ngh ị ch bi ế n trên (−2; −1) (−1; 0). c) 2 1 . 1 y x x = − + +  T ậ p xác đị nh: { } \ 1 . D R = −  Đạ o hàm: ( ) 2 2 1 0, 1 y x D x ′ = − − < ∀ ∈ → + hàm s ố luôn ngh ị ch bi ế n trên t ậ p xác đị nh c ủ a nó. d) 2 2 2. y x x = − +  Hàm s ố xác đị nh khi ( ) 2 2 2 2 0 1 1 0, . x x x x D R − + ≥ ⇔ − + > ∀ → =  Đạ o hàm: ( ) 2 2 2 2 2 1 0 1. 2 2 2 2 2 x x x y y x x x x x ′ − + − ′ ′ = = → = ⇔ = − + − +  B ả ng xét d ấ u c ủ a đạ o hàm: x −∞ 1 +∞ ' y − 0 + Hàm s ố đồ ng bi ế n trên (1; +∞) ngh ị ch bi ế n trên (−∞; 1). e) 2 2 . y x x = −  Hàm s ố xác đị nh khi ( ) [ ] 2 2 0 2 0 0 2 0; 2 . x x x x x D− ≥ ⇔ − ≤ ⇔ ≤ ≤ → =  Đạ o hàm: ( ) 2 2 2 2 1 0 1. 2 2 2 x x x y y x x x x x ′ − − ′ ′ = = → = ⇔ = − − LUYỆN THI ĐẠI HỌC MÔN TOÁN – Thầy Hùng Chuyên đề Hàm số Tham gia khóa TOÁN 2014 để đạt 9 điểm Toán – www.moon.vn facebook: LyHung95 – fanpage: Hungdv95  Bảng xét dấu của đạo hàm: x 0 1 2 ' y + 0 − Hàm s ố đồ ng bi ế n trên (0; 1) ngh ị ch bi ế n trên (1; 2). f) 2 1 . 3 2 x y x + = −  Hàm s ố xác đị nh khi 1 2 1 0 1 2 2 ; \ . 2 2 2 3 3 3 x x D x x  + ≥ ≥ −         ⇔ → = − + ∞       ≠       ≠     Đạ o hàm: ( ) ( ) ( ) ( ) ( ) 2 2 2 2 3 2 3 2 1 3 2 3 2 1 3 5 5 1 2 2 1 0 3 2 3 2 3 2 . 2 1 3 2 . 2 1 x x x x x x y y x x x x x x − − + − − + − − + ′ ′ = = = → = ⇔ = − < − − − + − +  B ả ng xét d ấ u c ủ a đạ o hàm: x 1 2 − 2 3 +∞ y’ − || − Từ bảng biến thiên ta thấy hàm số nghịch biến trên 1 2 ; 2 3   −     2 ; . 3   +∞     BÀI TẬP LUYỆN TẬP Xét sự biến thiên của các hàm số sau: 1) 2 5. y x = − + 2) 3 3 2. y x x = − + 3) 3 2 2 3 2. y x x = − + + 4) 3 2 3 3 12. y x x x= − + − 5) 4 2 2 5. y x x = − + 6) 4 2 4 1. y x x = − + − 7) 3 2 2 2. y x x x = + + − 8) 2 2 3 1. y x x = + + 9) 1 . 2 x y x + = − 10) 2 1 . 1 x y x − = + 11) 1 . 3 2 x y x − = − 12) 2 3 3 . 1 x x y x + + = + 13) 1 . y x x = + 14) 1 2 3 . 1 y x x = − − + Dạng 2. Sự biến thiên của hàm có tham số  Phương pháp: Sử dụng các tính chất của tam thức bậc hai để giải Xét tam th ức bậc hai: ( ) 2 , f x ax bx c = + + g ọ i x 1 ; x 2 là hai nghi ệ m c ủ a ph ươ ng trình f(x) = 0, v ớ i x 1 < x 2 + N ế u a > 0: ( ) ( ) 2 1 1 2 0 0 x x f x x x f x x x x >  > ⇔  <  < ⇔ < < + N ế u a < 0: ( ) ( ) 1 2 2 1 0 0 f x x x x x x f x x x > ⇔ < < >  < ⇔  <  + ( ) 0 0, 0 a f x x R >  > ∀ ∈ ⇔  ∆ <  + ( ) 0 0, 0 a f x x R <  < ∀ ∈ ⇔  ∆ <  + ( ) ( ) 1 2 1 2 1 2 α β 0 α β 0, α ; β : 0 α β x x a x x f x x a x x < < <  > →  < < < > ∀ ∈  < → < < < + ( ) ( ) 1 2 1 2 1 2 0 α β 0, α ; β : α β 0 α β a x x f x x x x a x x > → < < < < ∀ ∈ < < <  < →  < < <   Các ví dụ điển hình: Ví dụ: Tìm m để hàm s ố a) ( ) 3 2 1 3 x y x m x m = − + − + đồ ng bi ế n trên R. LUYỆN THI ĐẠI HỌC MÔN TOÁN – Thầy Hùng Chuyên đề Hàm số Tham gia khóa TOÁN 2014 để đạt 9 điểm Toán – www.moon.vn facebook: LyHung95 – fanpage: Hungdv95 b) ( ) 3 2 1 3 2 1 3 y x mx m x = − + + − + nghịch biến trên R. c) ( ) ( ) 3 2 1 3 2 2 3 m x y mx m x − = + + − + đồ ng bi ế n trên R. Lời giải: a) ( ) 3 2 2 1 2 1 3 x y x m x m y x x m ′ = − + − + → = − + − Hàm s ố đồ ng bi ế n trên R khi ( ) 0, 0 1 1 0 2. y x R m m ′ ′ ≥ ∀ ∈ ⇔ ∆ ≤ ⇔ − − ≤ ⇔ ≥ V ậ y hàm s ố đồ ng bi ế n trên R khi m ≥ 2. b) ( ) 3 2 2 1 3 2 1 2 3 2. 3 y x mx m x y x mx m ′ = − + + − + → = − + + − Hàm s ố ngh ị ch bi ế n trên R khi ( ) 2 3 17 3 17 0, 0 3 2 0 . 2 2 y x R m m m − − − + ′ ′ ≤ ∀ ∈ ⇔ ∆ ≤ ⇔ + − ≤ ⇔ ≤ ≤ V ậ y hàm s ố đồ ng bi ế n trên R khi 3 17 3 17 . 2 2 m − − − + ≤ ≤ c) ( ) ( ) ( ) 3 2 2 1 3 2 2 1 2 3 2 3 m x y mx m x y m x mx m − ′ = + + − + → = − + + − Để hàm s ố luôn đồ ng bi ế n trên R thì 0, . y x R ′ ≥ ∀ ∈  Khi 1 0 1 2 1. m m y x ′ − = ⇔ = → = + Ta th ấ y hàm s ố ch ỉ đồ ng biên trên 1 ; 2   − +∞     nên không thỏa mãn yêu cầu.  Khi ( )( ) 2 2 1 1 1 0 1 0 1 0, 0 1 3 2 0 2 5 2 0 m m m m m y x R m m m m m > >   − >    ′ − ≠ ⇔ ≠ → ≥ ∀ ∈ ⇔ ⇔ ⇔    ′ ∆ ≤ − − − ≤ − + − ≤      1 2 2. 1 2 m m m m >    ≥  ⇔ → ≥     ≤    V ậy với m ≥ 2 thì hàm số đã cho luôn đồng biến trên R. BÀI TẬP LUYỆN TẬP 1) Tìm m để hàm số ( ) 3 2 1 3 x y x m x m = − + − + đồng biến trên R. 2) Tìm m để hàm số ( ) 3 2 3 3 2 1 1 y x mx m x = − + − + đồ ng bi ế n trên R. 3) Tìm m để hàm s ố ( ) 3 2 1 3 2 1 3 y x mx m x = − + + − + ngh ị ch bi ế n trên R. 4) Tìm m để hàm s ố ( ) ( ) 3 2 5 1 2 3 3 3 x y m x m x = + − + − + đồ ng bi ế n trên R. II. CỰC TRỊ CỦA HÀM SỐ DẠNG 1. TÌM CỰC TRỊ CỦA HÀM SỐ BẰNG QUY TẮC I  Ph ươ ng pháp: + Tìm t ậ p xác đị nh c ủ a hàm s ố . + Tính ' y gi ả i ph ươ ng trình ' 0 y = để tìm các nghi ệ m. + L ậ p b ả ng bi ế n thiên d ự a vào b ả ng bi ế n thiên để k ế t lu ậ n v ề đ i ể m c ự c đạ i, c ự c ti ể u c ủ a hàm s ố .  Chú ý: V ớ i m ộ t s ố d ạ ng hàm đặ c bi ệ t (th ườ ng là hàm vô t ỉ ) thì ta ph ả i tính gi ớ i h ạ n t ạ i các đ i ể m biên để cho b ả ng bi ế n thiên đượ c ch ặ t ch ẽ h ơ n.  Các ví d ụ đ i ể n hình: Ví dụ 1: Tìm các kho ả ng đơ n đ i ệ u c ự c tr ị c ủ a các hàm s ố sau: a) 3 2 2 3 36 10. y x x x= + − − b) 4 2 2 3. y x x = + − LUYỆN THI ĐẠI HỌC MÔN TOÁN – Thầy Hùng Chuyên đề Hàm số Tham gia khóa TOÁN 2014 để đạt 9 điểm Toán – www.moon.vn facebook: LyHung95 – fanpage: Hungdv95 c) 2 4 2 . y x x = − d) 4 3 1 3. 4 y x x = − + Lời giải: a) 3 2 2 3 36 10. y x x x= + − −  Tập xác định: D = R.  Đạo hàm: ( ) 2 2 2 3 ' 6 6 36 6 6 ' 0 6 0 2 x y x x x x y x x x = −  = + − = + − → = ⇔ + − = ⇔  =   Bảng biến thiên: x −∞ −3 2 +∞ ' y + 0 − 0 + y 71 + ∞ −∞ − 54 T ừ b ả ng bi ế n thiên ta th ấ y hàm s ố đồ ng bi ế n trên ( −∞ ; 3) (2; + ∞ ); hàm s ố ngh ị ch bi ế n trên ( − 3; 2). Hàm s ố đạ t c ự c đạ i t ạ i x = − 3; y = 71 đạ t c ự c ti ể u t ạ i x = 2; y = − 54. b) 4 2 2 3. y x x = + −  T ậ p xác đị nh: D = R.  Đạ o hàm: ( ) 3 2 4 4 4 1 0 0. y x x x x y x ′ ′ = + = + → = ⇔ =  Bảng biến thiên: x −∞ 0 +∞ ' y − 0 + y +∞ +∞ −3 T ừ bảng biến thiên ta thấy hàm số đồng biến trên (−∞; 0) nghịch biến trên (0; +∞). Hàm s ố đạt cực tiểu tại x = 0; y = −3. c) 2 4 2 . y x x = −  Tập xác định: D = R.  Đạo hàm: ( ) ( ) 3 2 2 0 4 4 4 1 0 1 0 1 x y x x x x y x x x =  ′ ′ = − = − → = ⇔ − = ⇔  = ±   Bảng biến thiên: x −∞ −1 0 1 +∞ ' y + 0 − 0 + 0 − y 1 1 −∞ 0 −∞ T ừ bảng biến thiên ta thấy hàm số đồng biến trên (−∞; −1) (0; 1); hàm số nghịch biến trên (−1; 0) (1; +∞). Hàm s ố đạt cực đại tại x = −1; y = 1 x = 1; y = 1. Hàm s ố đạt cực tiểu tại x = 0; y = 0. d) 4 3 1 3. 4 y x x = − +  Tập xác định: D = R.  Đạo hàm: ( ) ( ) 3 2 2 2 0 3 3 0 3 0 3 x y x x x x y x x x =  ′ ′ = − = − → = ⇔ − = ⇔  =   Dấu của y’ chỉ phụ thuộc vào dấu của biểu thức (x − 3) nên ta có bảng biến thiên như hình vẽ LUYỆN THI ĐẠI HỌC MÔN TOÁN – Thầy Hùng Chuyên đề Hàm số Tham gia khóa TOÁN 2014 để đạt 9 điểm Toán – www.moon.vn facebook: LyHung95 – fanpage: Hungdv95 x −∞ 0 3 +∞ ' y − 0 − 0 + y + ∞ + ∞ 15 4 − T ừ bảng biến thiên ta thấy hàm số đồng biến trên (3; +∞) hàm số nghịch biến trên (−∞; 3). Hàm s ố đạt cực tiểu tại 15 3; . 4 x y= = − Ví dụ 2: Tìm các khoảng đơn điệu cực trị của các hàm số sau: a) 2 1 . y x x = − b) 2 2 3 1. y x x = + + c) 1 . 3 x y x + = + Lời giải: a) 2 1 . y x x = −  Hàm s ố xác đị nh khi [ ] 2 1 0 1 1 1;1 . x x D− ≥ ⇔ − ≤ ≤ → = −  Đạ o hàm: 2 2 2 2 2 2 1 2 1 1 0 1 2 0 2 1 1 x x y x y x x x x − ′ ′ = − − = → = ⇔ − = ⇔ = ± − −  B ả ng bi ế n thiên: x −1 1 2 − 1 2 +1 ' y − 0 + 0 − y 0 1 2 1 2 − 0 Hàm s ố đồ ng bi ế n trên 1 1 ; 2 2   −     ; hàm s ố ngh ị ch bi ế n trên 1 1; 2   − −     1 ;1 . 2       Hàm s ố đạ t c ự c đạ i t ạ i 1 1 ; 2 2 x y= = đạ t c ự c ti ể u t ạ i 1 1 ; . 2 2 x y= − = − b) 2 2 3 1. y x x = + +  T ậ p xác đị nh: D = R.  Đạ o hàm: 2 2 2 2 2 3 2 1 3 2 0 2 1 3 0 2 1 3 1 1 x x x y y x x x x x x + + ′ ′ = + = → = ⇔ + + = ⇔ + = − + + 2 2 2 0 0 0 2 2 4 4 9 5 4 5 5 x x x x x x x x <  < <      ⇔ ⇔ ⇔ → = −    = ± + = =        Gi ớ i h ạ n: ( ) 2 2 2 1 1 lim 2 3 1 lim 2 3 1 lim 2 3 1 x x x x x x x x x x →−∞ →−∞ →−∞     + + = + + = − + = +∞             ( ) 2 2 2 1 1 lim 2 3 1 lim 2 3 1 lim 2 3 1 x x x x x x x x x x →+∞ →+∞ →+∞     + + = + + = + + = +∞              B ả ng bi ế n thiên: LUYỆN THI ĐẠI HỌC MÔN TOÁN – Thầy Hùng Chuyên đề Hàm số Tham gia khóa TOÁN 2014 để đạt 9 điểm Toán – www.moon.vn facebook: LyHung95 – fanpage: Hungdv95 x −∞ 2 5 − +∞ ' y − 0 + 0 y +∞ +∞ 5 Hàm s ố đồ ng bi ế n trên 2 ; 5   −∞ −     ; hàm s ố ngh ị ch bi ế n trên 2 ; . 5   +∞     Hàm s ố đạ t c ự c ti ể u t ạ i 2 ; 5. 5 x y= − = c) 1 . 3 x y x + = +  Hàm s ố xác đị nh khi [ ] 3 0 3 3; . x x D + > ⇔ > − → = − + ∞  Đạ o hàm: ( ) ( ) ( ) ( ) ( ) 1 3 2 3 1 3 2 5 2 3 0, . 3 2 3 3 2 3 3 2 3 3 x x x x x x x y y x D x x x x x x x + + − + − − + + + + ′ ′ = = = = → > ∀ ∈ + + + + + + +  B ả ng bi ế n thiên: x −3 +∞ ' y + y +∞ −∞ Hàm s ố đ ã cho luôn đồ ng bi ế n trên mi ề n xác đị nh không có c ự c tr ị . BÀI TẬP LUYỆN TẬP: Tìm c ự c tr ị c ủ a các hàm s ố sau b ằ ng quy t ắ c I: 1) 2 3 3 2 y x x = − 2) 3 2 2 2 1. y x x x = − + − 3) 3 2 1 4 15 . 3 y x x x = − + − 4) 4 2 3. 2 x y x = − + 5) 4 2 4 5. y x x = − + 6) 4 2 3 . 2 2 x y x = − + + DẠNG 2. TÌM CỰC TRỊ CỦA HÀM SỐ BẰNG QUY TẮC II  Phương pháp: + Tìm tập xác định của hàm số. + Tính ' y giải phương trình ' 0 y = để tìm các nghiệm. + Tính '' y tại các giá trị nghiệm tìm được ở trên rồi kết luận.    Chú ý: Quy tắc II tìm cực trị thường được áp dụng cho các hàm số khó lập bảng biến thiên như hàm lượng giác, hàm siêu vi ệt, hàm vô tỉ  Các ví dụ điển hình: Ví dụ mẫu: Tìm các khoảng đơn điệu cực trị của các hàm số sau: a) sin 2 . y x x = − b) 1 cos cos2 . 2 y x x = + c) 2 2 . y x x x = + − Lời giải: a) sin 2 . y x x = −  T ậ p xác đị nh: D = R.  Đạ o hàm: 1 π π 2cos 2 1 0 cos 2 2 2 π π 2 3 6 y x y x x k x k ′ ′ = − → = ⇔ = ⇔ = ± + → = ± + LUYỆN THI ĐẠI HỌC MÔN TOÁN – Thầy Hùng Chuyên đề Hàm số Tham gia khóa TOÁN 2014 để đạt 9 điểm Toán – www.moon.vn facebook: LyHung95 – fanpage: Hungdv95  Đạo hàm bậc hai: π π π 4sin 2π 2 3 0 6 3 4sin 2 π π π 4sin 2π 2 3 0 6 3 y k k y x y k k     ′′ + = − + = − <         ′′ = − →     ′′ − + = − − + = >         Vậy hàm số đạt cực đại tại π π π 3 π π; sin 2π π π. 6 3 6 2 6 x k y k k k   = + = + − − = − −     Hàm số đạt cực tiểu tại π π π 3 π π; sin 2π π π. 6 3 6 2 6 x k y k k k   = − + = − + + − = − + −     b) 1 cos cos2 . 2 y x x = +  Tập xác định: D = R.  Đạo hàm: ( ) 2π1 2 π cos sin sin 2 sin 1 2cos 0 32 sin 0 π x k x y x x x x y x x k   = ± += −   ′ ′ = − − = − + → = ⇔ ⇔   = =     Đạo hàm bậc hai: cos 2cos2 y x x ′′ = − − + N ế u ( ) ( ) ( ) 2π 2π 4π 3 4 π cos 4 π 2cos 8 π 0 3 3 3 2 2 2 π cos 2 π 2cos 4 π 3 0 y n n n k n y n n n       ′′ ± + = − ± + − ± + = >       = →       ′′ = − − = − < + Nếu ( ) ( ) ( ) 2π 2π 4π 3 4 π 2π cos 4 π 2π 2cos 8 π 4π 0 3 3 3 2 2 1 π 2 π cos π 2 π 2cos 2π 4 π 1 0 y n n n k n y n n n       ′′ ± + + = − ± + + − ± + + = >       = + →       ′′ + = − + − + = − < Vậy hàm số đạt cực đại tại ( ) ( ) 3 ; 2 1 2 π; cos π cos 2π 1 2 ; 2 1 2 k n x k y k k k n  =  = = + =   − = +   Hàm số đạt cực tiểu tại 3 ; 2 2π 2π 1 4π 4 π; cos π cos 2π 1 3 3 2 3 ; 2 1 4 k n x k y k k k n  − =      = ± + = ± + + ± + =           = +   c) 2 2 . y x x x = + −  Hàm số xác định khi [ ] 2 2 0 0 2 0; 2 . x x x D− ≥ ⇔ ≤ ≤ → =  Đạo hàm: 2 2 2 2 2 2 2 1 2 2 2 1 1 0 2 1 2 1 2 2 1 2 2 2 x x x x x y y x x x x x x x x x x x x x x ≥  − − + −  ′ ′ = + = → = ⇔ − + − ⇔ − = − ⇔  − = − +  − −  2 1 2 2 1 1 1 2 2 . 2 2 2 2 4 1 0 2 2 1 1 2 2 x x x x x x x ≥    +  ≥  = = + +    ⇔ ⇔ → =    − + =     −   = = −      Đạ o hàm b ậ c hai: ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 1 1 2 0 2 2 2 2 2 2 x x x x x x x x x x y x x x x x x x x x x x x − − − − ′   − − − + − − ′′ = = = = − <     − − − − − −   V ậy hàm số đạt cực đại tại 2 2 ; 1 2. 2 x y + = = + BÀI TẬP LUYỆN TẬP: Tìm cực trị của các hàm số sau bằng quy tắc II: LUYỆN THI ĐẠI HỌC MÔN TOÁN – Thầy Hùng Chuyên đề Hàm số Tham gia khóa TOÁN 2014 để đạt 9 điểm Toán – www.moon.vn facebook: LyHung95 – fanpage: Hungdv95 1) 2 4. y x x = − 2) 2 2 5. y x x = − + 3) 2 4sin . y x x = − 4) 2 cos 3 . y x = 5) sin cos . 2 2 x x y = − 6) 2 4 . 3 2 x y x − = − DẠNG 3. TÌM ĐIỀU KIỆN ĐỂ HÀM SỐ CÓ CỰC TRỊ  Ph ươ ng pháp: + Hàm s ố có c ự c tr ị khi ' 0 y = có nghi ệ m đổ i d ấ u qua các nghi ệ m. + Hàm s ố đạ t c ự c đạ i, c ự c ti ể u t ạ i các đ i ể m có hoành độ x 1 ; x 2 thì khi đ ó x 1 ; x 2 là hai nghi ệ m c ủ a ' 0. y = + Hàm s ố đạ t cực đại t ạ i đ i ể m có hoành độ x 0 khi ( ) ( ) 0 0 0 0 y x y x ′  =   ′′ <   + Hàm s ố đạ t cực tiểu t ạ i đ i ể m có hoành độ x 0 khi ( ) ( ) 0 0 0 0 y x y x ′  =   ′′ >    Các ví d ụ đ i ể n hình: Ví dụ mẫu: Cho hàm số 3 2 3 2 3 1 y x mx x m = − + − + . Tìm giá tr ị c ủ a m để a) hàm s ố có c ự c tr ị . b) hàm s ố đạ t c ự c đạ i, c ự c ti ể u t ạ i x 1 , x 2 th ỏ a mãn x 1 + 2x 2 = 3. c) hàm s ố đạ t c ự c ti ể u t ạ i đ i ể m có hoành độ x = 2. d) hàm s ố đạ t c ự c đạ i t ạ i đ i ể m có hoành độ x = –1. Lời giải: a) Ta có 2 3 6 2 y x mx ′ = − + Hàm s ố đ ã cho có c ự c tr ị khi ' 0 y = có nghi ệ m đổ i d ấ u khi qua các nghi ệ m. ⇔ y’ = 0 có hai nghi ệ m phân bi ệ t 2 2 6 2 3 0 9 6 0 3 6 3 m m m m  >   ′ ⇔ ∆ > ⇔ − > ⇔ > ⇔  < −   V ậy với 6 6 ; 3 3 m m> < − thì hàm s ố đ ã cho có c ự c đạ i, c ự c ti ể u. b) G ọ i x 1 ; x 2 là hoành độ các đ i ể m c ự c đạ i, c ự c ti ể u. Khi đ ó x 1 ; x 2 là nghi ệ m c ủ a ph ươ ng trình ' 0 y = . Theo đị nh lí Vi-ét ta có 1 2 1 2 2 2 3 x x m x x + =    =   Theo gi ả i thi ế t ta có x 1 + 2x 2 = 3 ( )( ) 1 2 1 1 2 2 1 2 2 3 4 3 2 3 2 2 2 4 3 3 2 3 3 x x x m x x m x m x x m m     + = = −   → + = ⇔ = −       = − − =   2 2 29 8 18 0 24 54 29 0 3 m m m m → − + = ⇔ − + = → ph ươ ng trình vô nghi ệ m. V ậ y không có giá tr ị nào c ủ a m th ỏ a mãn đề bài. c) Ta có 6 6 y x m ′′ = − Hàm s ố đạ t c ự c ti ể u t ạ i x = 2 khi ( ) ( ) 7 2 0 3.4 12 2 0 7 . 6 12 6 0 6 2 0 2 y m m m m y m  ′  = − + = =    ⇔ ⇔ → =    − > ′′ >     <  Giá tr ị 7 6 m = th ỏ a mãn đ i ề u ki ệ n t ồ n t ạ i c ự c tr ị nên là giá tr ị c ầ n tìm. d) Hàm s ố đạ t c ự c đạ i t ạ i x = –1 khi ( ) ( ) 5 1 0 3 6 2 0 5 . 6 6 6 0 6 1 0 1 y m m m m y m  ′  − = + + = = −    ⇔ ⇔ → = −    − − < ′′ − <     > −  LUYỆN THI ĐẠI HỌC MÔN TOÁN – Thầy Hùng Chuyên đề Hàm số Tham gia khóa TOÁN 2014 để đạt 9 điểm Toán – www.moon.vn facebook: LyHung95 – fanpage: Hungdv95 Giá trị 5 6 m = − thỏa mãn điều kiện tồn tại cực trị nên là giá trị cần tìm. BÀI TẬP LUYỆN TẬP: Bài 1. Cho hàm số ( ) 3 2 1 2 3 2. 3 y x mx m x = + + + + Tìm giá trị của m để a) hàm số có cực trị. b) hàm số đạt cực đại, cực tiểu tại x 1 , x 2 thỏa mãn 2x 1 + 3x 2 = –2. c) hàm số đạt cực đại tại điểm có hoành độ x = 0. d) hàm số đạt cực tiểu tại điểm có hoành độ x = –2. Bài 2. Cho hàm số ( ) 3 2 1 6 1 3 y x mx m x = + + + − . Tìm giá trị của m để a) hàm số có cực trị. b) hàm số đạt cực đại, cực tiểu tại x 1 , x 2 thỏa mãn 1 1 1 2 1 1 . 3 x x x x + + = c) hàm số đạt cực đại tại điểm có hoành độ x = 1. d) hàm số đạt cực tiểu tại điểm có hoành độ x = 0. Bài 3. Tìm m để các hàm số sau không có cực trị ? a) y = x 3 – 3x 2 + 3mx + 3m + 4. b) y = mx 3 + 3mx 2 – (m – 1)x – 1. Bài 4. Tìm a, b để hàm số a) y = ax 4 + bx 2 đạt cực trị bằng –9 tại điểm 3. x = b) 2 ax bx ab y bx a + + = + đạ t c ự c tr ị t ạ i x = 0 x = 4. c) 2 2 ax 2 1 x b y x + + = + đạ t c ự c đạ i b ằ ng 5 t ạ i đ i ể m x = 1. Bài 5. Tìm m để hàm s ố a) ( ) ( ) ( ) 3 2 2 2 2 1 4 1 2 1 y x m x m m x m = + − + − + − + đạ t c ự c tr ị t ạ i hai đ i ể m x 1 , x 2 sao cho ( ) 1 2 1 2 1 1 1 . 2 x x x x + = + b) 3 2 1 1 3 y x mx mx = − + − đạ t c ự c tr ị t ạ i hai đ i ể m x 1 , x 2 sao cho 1 2 8. x x − ≥ c) 3 2 1 1 ( 1) 3( 2) 3 3 y mx m x m x = − − + − + đạ t c ự c tr ị t ạ i hai đ i ể m x 1 , x 2 sao cho x 1 + 2x 2 = 1. [...]... tiệm cận đứng của đồ thị hàm số →  x+2   lim =∞  x  5  x 2 + 4 x − 5   →−  x−2 Ví dụ 2: Biện luận theo m số tiệm cận đứng của đồ thị hàm số y = 2 x + 3x + m Hướng dẫn giải : Số tiệm cận đứng của đồ thị hàm số đã cho là số nghiệm khác 2 của phương trình x2 + 3x + m = 0 9 Đồ thị hàm số không có tiệm cận đứng khi x2 + 3x + m = 0 vô nghiệm ⇔ ∆ < 0 ⇔ 9 − 4m < 0 ⇔ m > 4 Đồ thị hàm số có một tiệm... Thầy Hùng Chuyên đề Hàm số Tài liệu bài giảng: KHẢO SÁT VẼ ĐỒ THỊ HÀM SỐ P2 Thầy Đặng Việt Hùng III ĐIỂM UỐN, TÍNH LỒI LÕM Quy tắc xét tính lồi lõm, tìm điểm uốn: Tính đạo hàm y ' rồi tính tiếp y '' Giải phương trình y '' = 0 , từ đó tìm được tọa độ điểm uốn Xét dấu của y '' để kết luận: + nếu y '' > 0 thì đồ thị hàm số lõm + nếu y '' < 0 thì đồ thị hàm số lồi Ví dụ 1: Tìm tọa độ điểm uốn các khoảng... LTĐH MÔN TOÁN – Thầy Hùng Bài 2 Cho hàm số y = Chuyên đề Hàm số các bài toán liên quan – www.moon.vn 2mx + 3 (C ) x−m Gọi M là một điểm thuộc đồ thị hàm số Tiếp tuyến với đồ thị tại M cắt các tiệm cận tại A, B Tìm điểm M đề tam giác IAB có diện tích bằng 64 Đ/s: m = ± 58 2 Bài 3 Cho hàm số y = x−2 (C ) x +1 Gọi M là một điểm thuộc đồ thị hàm số Tiếp tuyến với đồ thị tại M cắt các tiệm cận tại A,... HỌC MÔN TOÁN – Thầy Hùng Chuyên đề HÀM SỐ Tài liệu bài giảng: 01 TIẾP TUYẾN CỦA ĐỒ THỊ HÀM SỐ – P5 Thầy Đặng Việt Hùng DẠNG 3 TIẾP TUYẾN CỦA ĐỒ THỊ HÀM SỐ ĐI QUA MỘT ĐIÊM CHO TRƯỚC Cho hàm số y = f(x) có đồ thị là (C) Điểm A(xA ; yA) không thuộc đồ thị Viết viết các phương trình tiếp tuyến kẻ từ A đến đồ thị ta thực hiện như sau : → + Gọi d là đường thẳng đi qua A có hệ số góc k  d : y = k ( x... điểm uốn của đồ thị Ví dụ 2 Cho hàm số y = x3 + 3x 2 + x + 1 Tìm diểm M thuộc đồ thị hàm số sao cho tiếp tuyến tại M với đồ thị đi qua gốc tọa độ O Đ/s: M (−1; 2) Ví dụ 3 Cho hàm số y = x +1 x−2 (C ) Tìm diểm M thuộc đồ thị hàm số (C) sao cho tiếp tuyến tại M với đồ thị cắt các trục tọa độ Ox, Oy tại A, B sao cho OA = 3OB, với O là gốc tọa độ Đ/s: Một điểm M là M (3; 4) Ví dụ 4 Cho hàm số y = x (C... tâm đối xứng của đồ thị (I là giao của hai tiệm cận) Ví dụ 2 Cho hàm số y = 2x − 3 (C ) x−2 Gọi M là một điểm thuộc đồ thị hàm số Tiếp tuyến với đồ thị tại M cắt các tiệm cận tại A, B Tìm điểm M đề độ dài đoạn AB ngắn nhất Đ/s: M (3;3), M (1;1) Ví dụ 3 Cho hàm số y = 2x + 1 (C ) x −1 Gọi M là một điểm thuộc đồ thị hàm số Tiếp tuyến với đồ thị tại M cắt các tiệm cận tại A, B Tìm điểm M đề chu vi tam... đi qua A(2; 0) đến đồ thị hàm số Ví dụ 2 Cho hàm số y = − x3 + 9 x Viết phương trình tiếp tuyến biêt tiêp tuyến b) tiếp tuyến vuông góc với đường thẳng d: 3x + 23y + 2 = 0 c) biết tiếp tuyến đi qua A(3; 0) đến đồ thị hàm số Ví dụ 3 Cho hàm số y = − x3 + 9 x Viết phương trình tiếp tuyến biêt tiêp tuyến kẻ từ O(0; 0) đến đồ thị hàm số Ví dụ 4 CMR không có tiếp tuyến nào của đồ thị hàm số y = x đi qua giao... đi qua A  ; −1 đến đồ thị hàm số y = x3 – 3x + 1 3  ( b) Kẻ từ A(0; 4) đến đồ thị hàm số y = 2 − x 2 2 ) x+2 2x −1 Bài 3 Viết phương trình tiếp tuyến kẻ từ điểm A ( 0; −1) đến đồ thị hàm số y = x3 + x 2 − x + 2 Đ/s: y = 4 x − 1 Bài 2 Viết phương trình tiếp tuyến kẻ từ điểm A (1; −2 ) đến đồ thị hàm số y = Bài 4 Viết phương trình tiếp tuyến kẻ từ điểm A(1; 4) đến đồ thị hàm số y = 2 x3 − x 2 + 3x... Thầy Hùng Chuyên đề Hàm số các bài toán liên quan – www.moon.vn + Hàm số đạt cực đại hoặc cực tiểu tại x = x0 ⇔ y′ ( x0 ) = 0  m → + Với m tìm được, thay vào hàm số rồi khảo sát, từ bảng biến thiên ta có kết luận về hàm số đạt cực đại, hay cực tiểu tại điểm x0 hay không Ví dụ 3: Cho hàm số y = x3 + (m − 2) x 2 + (m + 1) x + 3 − m a) Tìm m để hàm số có cực đại, cực tiểu b) Tìm m để hàm số đạt cực... (3x − 5)] = x  →∞ Ví dụ 2: Tìm m để đồ thị hàm số y = Chuyên đề Hàm số 13 = 0 ⇒ y = 3x − 5 là tiệm cận xiên của đồ thị hàm số x+2 2 x 2 + mx − 2 có tiệm cận xiên tạo với hai trục tọa độ một tam giác có diện tích x +1 bằng 4 Hướng dẫn giải : 2 x 2 + mx − 2 m = 2x + m − 2 − x +1 x +1 Đồ thị có tiệm cận xiên khi m ≠ 0 Với m ≠ 0 thì tiệm cận xiên của đồ thị hàm số là y = 2x + m – 2, (d) 2−m  + Giả

Ngày đăng: 21/03/2014, 14:22

TỪ KHÓA LIÊN QUAN

w