TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2021 Facebook Nguyễn Vương https //www facebook com/phong baovuong Trang 1 (ĐỘ KHÓ TĂNG DẦN) Câu 1 (Chuyên Quốc Học Huế 2021) Tìm tập nghiệm của phương trình sin 0x A [.]
TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2021 Chủ đề 10 MỘT SỐ BÀI TỐN ĐẠI SỐ 11 (ĐỘ KHĨ TĂNG DẦN) Câu (Chuyên Quốc Học Huế - 2021) Tìm tập nghiệm phương trình sin x A S k 2 , k B S k 2 , k C S k , k D S k , k Lời giải Chọn C Ta có sin x x k , k Vậy tập nghiệm phương trình S k , k Câu (Chuyên Thái Bình - 2021) Cho cấp số cộng un , n * có u1 3, u3 Công sai cấp số cộng A 2 B C 4 D Lời giải Chọn D Ta có: un u1 n 1 d u3 u1 2d 2d d Câu (Chuyên Tuyên Quang - 2021) Cho cấp số cộng un có u1 2 cơng sai d Tìm số hạng u10 A u10 28 B u10 2.39 C u10 29 Lời giải D u10 25 Chọn D Ta có: u10 u1 9d 2 9.3 25 Câu (Chuyên Vinh - 2021) Cho cấp số nhân un biết u2 3, u3 Số hạng đầu u1 A Lời giải B D C Chọn C u2 u1.q 3 u1.q u q ,vậy u1 Ta có 2 q 6 u1.q u3 u1.q Câu (Đại Học Hồng Đức - 2021) Cho cấp số nhân un , biết u1 1; u4 64 Công bội cấp số nhân A 4 C Lời giải B D 64 Chọn B Ta có u4 u1q q 64 q Câu 10 (ĐGNL-ĐH Sư Phạm HCM - 2021) Hệ số x khai triển 1 x A B A106 D C106 C 6! Lời giải Chọn D 10 10 10 Theo công thức nhị thức Niu-tơn 1 x C10k 110 k x k C10k x k k 0 k 0 Facebook Nguyễn Vương https://www.facebook.com/phong.baovuong Trang NGUYỄN BẢO VƯƠNG - 0946798489 Vì số hạng chứa x nên k Vậy hệ số x C106 Câu (Liên Trường Nghệ An – 2021) Cho cấp số nhân un có số hạng đầu u1 cơng bội q Kí hiệu S n tổng n số hạng đầu cấp số nhân Chọn khẳng định đúng: A S n u1 1 qn 1 q B S n u1 1 qn q 1 C S n u1 qn q 1 D S n u1 qn 1 q Lời giải qn Theo cơng thức ta có S n u1 1 q Câu (Sở Cần Thơ - 2021) Cho cấp số nhân un có u3 u4 12 Công bội cấp số nhân cho A 6 B C D Lời giải Chọn D Ta có: q Câu u4 12 u3 (Sở Cần Thơ - 2021) Cho cấp số cộng un có u1 u2 Giá trị u3 A B C D Lời giải Chọn A Ta có u1 u3 2u2 1 u3 u3 Câu 10 (Sở Cần Thơ - 2021) Cho cấp số nhân (un ) , biết u1 2 công bội q Số hạng u2 A 18 B C D 6 Lời giải Chọn D Ta có: un u1q n1 nên u2 u1q 6 Câu 11 (Sở Cao Bằng - 2021) Cho cấp số cộng un có số hạng đầu u1 3 u6 27 Công sai d cấp số cộng là: A d B d C d Lời giải D d Chọn A Áp dụng công thức số hạng tổng quát un u1 n 1 d ta u6 u1 27 6 5 Câu 12 (Sở Hịa Bình - 2021) Một cấp số cộng có số hạng đầu u1 công sai d Số hạng thứ cấp số cộng A u3 18 B u3 10 C u3 11 D u3 Lời giải Chọn C Số hạng thứ cấp số cộng u3 u1 2d 2.3 có: u6 u1 1 d d Câu 13 (Sở Hưng Yên - 2021) Cho cấp số nhân un có số hạng đầu u1 có số hạng thứ hai u2 6 Số hạng thứ tư bằng: A 12 B 24 C 24 D 12 Lời giải Trang Fanpage Nguyễn Bảo Vương https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ƠN TẬP TNTHPT 2021 Chọn B Ta có u 6 q 2 u1 u4 u1 q3 24 Câu 14 (Sở Nam Định - 2021) Nếu cấp số nhân un có số hạng đầu u1 , công bội q A B 16 C D u5 Lời giải Chọn A 1 Ta có: u5 u1.q 2 Câu 15 (Sở Quảng Bình - 2021) Cho cấp số nhân un với u1 u4 54 Công bội cấp số nhân A q B q 3 C q D q 2 Lời giải Ta có u u1 q 54 2.q q Câu 16 (Sở Sơn La - 2021) Cho cấp số cộng un u1 u2 1 Công sai cấp số cộng A B 4 C D Lời giải Chọn B Công sai cấp số cộng: d u2 u1 1 4 Câu 17 (Sở Bạc Liêu - 2021) Cho cấp số nhân có u 5; u3 10 Công bội q cấp số nhân A 15 B 15 C q D q 2 Lời giải Chọn D Công bội cấp số nhân q u3 2 u2 Câu 18 (Sở Bình Phước - 2021) Cho cấp số nhân un có u1 2, cơng bội q Giá trị u3 A u3 18 B u3 C u3 Lời giải D u3 Chọn A Ta có u3 u1.q 2.32 18 Câu 19 (Chuyên AMSTERDAM - Hà Nội - 2021) Cho un cấp số nhân có u3 , u4 Tìm cơng bội q cấp số nhân A q B q C q Lời giải D q 4 Chọn C Có u4 u3 q q u4 u3 Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang NGUYỄN BẢO VƯƠNG - 0946798489 Câu 20 (Chuyên Biên Hòa - 2021) Cho cấp số cộng un xác định u1 , un un 1 3, n Công sai cấp số cộng A B C D 3 Lời giải Chọn A Cấp số cộng có dạng un un 1 d với d công sai Câu 21 (Chuyên Hà Tĩnh - 2021) Cấp số cộng có số hạng đầu , cơng sai Số hạng thứ cấp số cộng A 10 B 12 C D Lời giải Chọn A Cấp số cộng có số hạng đầu u1 công sai d Số hạng thứ cấp số cộng bằng: u3 u1 2.d 2.4 10 Câu 22 (Chuyên Hùng Vương - Gia Lai - 2021) Cho cấp số cộng un , biết u9 17, d Giá trị u10 A u10 20 C u10 19 Lời giải B u10 21 D u10 15 Chọn C u10 u9 d 17 19 Câu 23 (Chuyên Lê Hồng Phong - Nam Định - 2021) Cho cấp số nhân un với u1 u2 Công bội cấp số nhân A B C D 12 Lời giải Chọn A Dãy cấp số nhân cho có cơng bội q u2 3 u1 Câu 24 (Chuyên Lương Văn Chánh - Phú Yên - 2021) Cho cấp số nhân un với u1 công bội q Giá trị u2 A B C D Lời giải Chọn C Vì un cấp số nhân nên u2 u1.q 2.3 Câu 25 (Chuyên Long An - 2021) Cho cấp số nhân có số hạng đầu u1 công bội q 2 Giá trị u6 A 8 B 128 C 64 Lời giải D 64 Chọn C un u1.q n 1 u6 u1.q 2 64 Câu 26 (Chuyên Long An - 2021) Cho hàm số y xe x 3sin x Khi y '(0) có giá trị A B C D 4 Lời giải Chọn B Ta có: y ' xe x 2e x 6cos x y '(0) Trang Fanpage Nguyễn Bảo Vương https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2021 Câu 27 (Chuyên Lê Khiết - Quảng Ngãi - 2021) Cho cấp số cộng un có u2 u4 Giá trị u6 A u6 B u6 C u6 1 D u6 Lời giải Chọn B u2 1 Mà u2 u1 d u1 u2 d , Suy u6 u1 5d Ta có u4 u1 3d u2 2d d Câu 28 (Cụm Ninh Bình – 2021) Cho cấp số cộng có u1 ; d Kết kết sau A u5 B u3 C u6 13 D u2 Lời giải Áp dụng công thức un u1 n 1 d Ta có u5 u1 4d 4.2 Câu 29 (Chuyên Quốc Học Huế - 2021) Cho sin 2a A 121 81 B 81 Tính P sin a cos4 a C 161 81 D 41 81 Lời giải Chọn Ta có: D 2 41 P sin a cos a sin a cos a sin a cos a sin a.cos a sin 2a 81 Câu 30 (Chuyên Quốc Học Huế - 2021) Cho dãy số un với un 3n 1, n * Tính tổng 100 số hạng dãy số A 15200 B 14750 C 4750 Lời giải D 15050 Chọn D un 3n un 1 n 1 3n un 1 un un cấp số cộng có u1 , d Vậy S100 100u1 100.99.d 100.99.3 100.2 15050 2 Câu 31 (Chuyên Nguyễn Bỉnh Khiêm - Quảng Nam - 2021) Tìm hệ số số hạng chứa x12 khai 21 triển nhị thức Newton x , x x A 16C21 B 16C214 12 C 8C21 x Lời giải D 8C21 Chọn D k k 2 Số hạng tổng quát khai triển: Tk 1 C21k x 21 k C21k 2 x 213k x Theo đề ta có: 21 3k 12 k Vậy hệ số số hạng chứa x12 khai triển là: 8C21 x2 x x x x Câu 32 (ĐGNL-ĐH Sư Phạm HCM - 2021) Giá trị giới hạn lim Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang NGUYỄN BẢO VƯƠNG - 0946798489 A Lời giải B 1 D C Chọn C x2 x lim lim x x x x 1 x x 2 2 x Câu 33 (Chuyên AMSTERDAM - Hà Nội - 2021) Giải phương trình 2cos x 3cos x A x k 2 ; x C x k 2 ; x k 2 k B x k 2 ; x k 2 k D x k 2 ; x k 2 k 5 k 2 k Lời giải Chọn B cos x Ta có: cos x 3cos x cos x cos x x k 2 , k cos x x k 2 , k Câu 34 (Chuyên Bắc Giang - 2021) Cho cấp số cộng có u5 15, u20 60 Tổng 20 số hạng cấp số cộng A 200 B 200 C 250 D 150 Lời giải Chọn C u5 u1 4d = 15 u 35 Ta có d = u20 u1 19d = 60 35 20 1 5 20 Tổng 20 số hạng cấp số cộng S 20 250 11 Câu 35 (Chuyên ĐHSP - 2021) Hệ số x khai triển thành đa thức biểu thức 3x A C117 34 27 B C117 34 C C117 37 Lời giải D C117 37 Chọn A 11 11 k 11 k Ta có x C11k x 2 k 0 11 11 k C11k 3k 2 xk k 0 4 11 Hệ số x k hệ số C 2 C117 34 27 Câu 36 (Chuyên Quốc Học Huế - 2021) Dãy số un sau dãy số giảm? A un sin n 1 B un 2n 1 C un n Lời giải D un n2 1 n Chọn C - Xét phương án A: un sin n Dựa vào tính chất hàm số sin ta thấy dãy số un với un sin n không tăng, không giảm (Loại) Trang Fanpage Nguyễn Bảo Vương https://www.facebook.com/tracnghiemtoanthpt489/ TÀI LIỆU TỔNG ÔN TẬP TNTHPT 2021 1 - Xét phương án B: un 2n 1 1 Ta có u1 ; u2 u1 u2 (Loại) - Xét phương án C: un n 1 1 un1 un 0, n * un1 un , n * Ta có un1 n 1 n n n n 1 dãy số giảm n n2 - Xét phương án D: un n Ta có : u1 0; u2 u1 u2 (Loại) Suy dãy số un với un Câu 37 (Chuyên Bắc Giang - 2021) Phương trình tiếp tuyến điểm cực đại đồ thị hàm số y x x A y B y 4 x C y x 23 D y 4 x Lời giải Chọn A Cách 1: Tập xác định: D x Ta có y x3 x; y x Bảng biến thiên Suy ra, đồ thị hàm số đạt cực đại điểm 0;1 Vậy phương trình tiếp tuyến điểm cực đại là: y Cách 2: (Trắc nghiệm) Vì tiếp tuyến điểm cực trị đường thẳng song song với Ox nên chọn phương án A Câu 38 (Chuyên Bắc Giang - 2021) Cho n số nguyên dương thỏa mãn 5Cnn1 Cn3 Tìm hệ số n x2 số hạng chứa x khai triển nhị thức Niu-tơn , x x 35 35 35 35 A B x5 C x5 D 16 16 16 Lời giải Chọn A Ta có: 5Cnn1 Cn3 n! n! n 1! 3! n 3! n 1 n n n2 3n 28 n 4 Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang NGUYỄN BẢO VƯƠNG - 0946798489 Vì n * n x2 Với n , ta có khai triển: x x2 Số hạng thứ k khai triển Tk 1 C 2 k k k k 1 k k 7 14 3k 1 C7 x x Để số hạng thứ k chứa x5 14 3k k Vậy hệ số cần tìm 1 C73 24 35 16 Câu 39 (Chuyên Lê Hồng Phong Nam Định 8 x a0 a1 x a5 x a8 x Tìm hệ số a5 A a5 448 B a5 448 - 2021) C a5 56 Lời giải Cho khai triển D a5 56 Chọn A Ta có cơng thức nhị thức Niu-tơn: n a b Cn0 a n Cn1 a n 1b Cnk a nk bk Cnn1ab n1 Cnnb n n Cnk a k b n k k 0 8 Áp dụng công thức Niu-tơn cho khai triển x C8k 2k x k 0 8 k C8k 2k 1 8 k x8 k k 0 Hệ số a5 hệ số số hạng chứa x hay k k Vậy a5 C83 23 1 448 Theo dõi Fanpage: Nguyễn Bảo Vương https://www.facebook.com/tracnghiemtoanthpt489/ Hoặc Facebook: Nguyễn Vương https://www.facebook.com/phong.baovuong Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) https://www.facebook.com/groups/703546230477890/ Ấn sub kênh Youtube: Nguyễn Vương https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view_as=subscriber Tải nhiều tài liệu tại: http://diendangiaovientoan.vn/ ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ! Trang Fanpage Nguyễn Bảo Vương https://www.facebook.com/tracnghiemtoanthpt489/ ... 11? ?? k Ta có x C11k x 2 k 0 11 11 k C11k 3k 2 xk k 0 4 11 Hệ số x k hệ số C 2 C117 34 27 Câu 36 (Chuyên Quốc Học Huế - 2021) Dãy số un sau dãy số. .. 20 số hạng cấp số cộng S 20 250 11 Câu 35 (Chuyên ĐHSP - 2021) Hệ số x khai triển thành đa thức biểu thức 3x A C117 34 27 B C117 34 C C117 37 Lời giải D C117 37 Chọn A 11 11... 12 (Sở Hịa Bình - 2021) Một cấp số cộng có số hạng đầu u1 cơng sai d Số hạng thứ cấp số cộng A u3 18 B u3 10 C u3 11 D u3 Lời giải Chọn C Số hạng thứ cấp số cộng u3 u1 2d