708 M6 hinh dieu khign he thong bom ep nu 6c khai th^c dau trong cong nghe khai thac dau khi M O HINH DIEU KHIEN HE THONG BCnvl EP N l / O C KHAI THAC DAU TRONG CONG NGHE KHAI T H A C DAU KHI Tran H6n[.]
708 M6 hinh dieu khign he thong bom ep nu-6c - khai th^c dau cong nghe khai thac dau M O H I N H D I E U KHIEN H E T H O N G BCnvl EP N l / O C KHAI T H A C D A U T R O N G C O N G N G H E K H A I T H A C D A U KHI Tran H6ng Phong XNLD Vietsovpetro TOM TAT Bdo cdo trinh bdy phuong phdp mdi gidi hi phuong trinh dgng luc phi tuyin md khdng phu thudc ro rdng vdo thoi gian nhu hi thdng bom ep - khai thde ddu Phucmg phdp tgm lap khodng trdng gida md hinh thiit lap vd ly thuyit khong gian - thdi gian Md hinh tgo cd khd ndng kiim tra cdc qud trinh thdng qua cdc cdng thirc thi hiin mdt cdch dinh lugng mdi quan hi xdc sudt giira cdc yiu td Nd cho phep xdc dinh mirc tu cua todn bd cdc yiu td hi vd mdi quan hi cua ' ' ^ ' ' chung Nd cung thiit lap dugc cdc hdm ddi tugng dieu chinh di xdc dinh dugc gid tri tdi uu ciia hi, v.v Nguyin ly ndy dugc dp dung di tdi uu hod bom ip nu&c cho md ddu mdng Bgch Hd Phuong phdp mdn vd md hinh diiu hdnh ndy cd thi dugc dp dung rdng rdi di kiim tra qud trinh bom ip nu&c - khai thde ddu tucmg lai DAT VAN DE Trong c6ng nghe khai thac dau khi, bom ep nuac, vao via la phuang phap phi bien de tri ap suat via, keo dai thai gian tu phun cua cac gilng khai thac va la mot nhting bien phap thu h6i dau hieu qua nhat Ciing vai sir phat trien cua cac phuong phap tren, cac bai toan tii uu qua trinh khai thac dau tap trung ve ky thuat tinh toan, phat triln phuong phap c l diln Day la each tilp can kh6ng phan tich chi tiet cac qua trinh phan tir ma khao sat cac hien tugng tren quan diem nhat la quan diem ve su bien d6i nang lugng cac hien tugng Toan bg cac bai toan xem xet, chu ylu sir dung phuang phap co hoc dong chay nhilu pha chuyen dong frong m6i truong x6p He phuang trinh co so bao gIm cac phuang trinh thuy nhiet dong luc hoc, cac dieu kien ban dau, dieu kien bien va cac he thiic dong kin Ngay nay, vod ky thuat hien dai, he phuang trinh thu nhan dugc biin d6i vl dang thuan tien dk giai sl va cac loai chuang trinh tinh dugc hinh hiy theo dang mo ph6ng dl xac dinh gia tri cac biin Pj, Sj, Cj (i = 1,2, 3) tai tat ca cac diem luod ciing nhu luu lugng gilng theo thoi gian t Cac m6 hinh da dugc nghien ciiu tren thi gioi dugc bilt cho din la: - Dong tham mgt pha dAu hoae nuoc m6i truang xip co chenh ap hay m6 hinh Darcy, - Dong tham mot pha chat long khae mau hay m6 hinh dong chay "kbac mau", - D6ng tham mot chieu diing nuoc day dau hay m6 hinh Leibenzon-Masket, - D6ng tham hai pha dau va nuoc hay m6 hinh Buckly-Leverett, - Dong tham hai pha c6 tinh den lire mao dan va truong, - Dong tham hai pha hoa theo n6ng Cj, - Dong tham hai pha moi truong nirt ne hay mo hinh Hell-Shaw, - Dong tham nhieu pha m6i truong x6p Tuygn tap bao cao Hgi nghj KHCN "30 nSm Phu Vigt Nam: CQ- hoi moi, thach thiic moi" 709 Cae e6ng trinh tren da gop phan lam sang t6 co cbl boat dong ciia cac loai chat luu chuyin dong m6i truong via, du bao cac giai doan ngap nuoc, danh gia trtr lugng khai thac c6ng nghiep va can cir vao dae dilm dich chuyen eiia mat phan each dau nuoc de xac dinh nhip bom ep va khai thac t6i uu Cac nghien ciiu tren da giai quyet nhung van dl t6ng quat vl phan tich, ting hgp he th6ng nham phuc vu thiet ke khai thae va nho ma c6ng nghe thiet ke khai thac co nhimg buoc tien bo dai Tuy nhien, ban che ehii yeu eiia cac phuang phap c6 dien la ch6: de giai he phuong trinh co so ta phai dat cac dieu kien phu gia dinh (dieu kien ban dau, dieu kien bien) cho nghiem ciia bai toan t6n tai nhat va phu thuoc lien tuc vao cac dieu kien phu hay c6n goi la bai toan "dat dung dan" Tren thuc te, he th6ng khai thac dau c6 nhieu nhan t6 ngau nhien kh6ng the doan truoc dugc tac dong: cau true dia chat ciia via va phan b6 cac th6ng s6 cua no nhu dien tich, day, r6ng, tham, bat d6ng nhat v.v De hieu biet tuong tan ve chiing can phai c6 thai gian thu thap th6ng tin, nen cac dieu kien phu cting bj chi ph6i boi cac nhan t6 ngau nhien nay, va tir lam cho ca vi tri dat cac gieng khoan m6i truong via ciing deu e6 bat dinh nhat dinh, xac suat c6ng theo du kien tang hay giam phu thuoc vao bat dinh Vi the, ket qua cac bai toan c6 dien c6ng nghe khai thac dau hau nhu chua bao gio dugc coi la bai toan "dat dung dan" nen nhiing "viing mo" kh6ng xac djnh dugc Ngoai ra, co nhieu van de sinh ma cac phuong phap truyen th6ng kh6ng giai thich dugc tron ven nhu: m6i lien he co ban giiia cac gieng bom ep va cac gieng khai thac dang d6ng thai boat dong, van de bao dam nhjp khai thac dii va chinh xac phii hgp voi mat mang de ban che luai nuoc xuat hien via, van de tieu chi danh gia boat dong ciia cac gieng nham chi cac phuong phap cai tien kip thoi va co hieu qua Do do, phuong phap truyen th6ng chi co tinh du bao ve t6ng the ma kh6ng dua dugc ly thuyet dieu khien theo tinh hu6ng co tinh den nhtrng yeu t6 ngau nhien chi ph6i Trong co nhting tinh hu6ng bat nga neu sai lech qua can bang se dan den cac phan nhanh khae vi du nhu thay vi c6n tri dugc che khai thac tu phun khoang thai gian lau hon ntra thi gieng lai bi ngap nuoc qua nhanh vi tri dat gieng kh6ng thuan lgi va luu lugng bom ep kh6ng dugc dieu chinh kip thod ma trii lugng khai thac tiem nang viing nghien ciiu van c6n nen phai t6n them chi phi b6 sung kh6ng dang co De giai quyet nhung van de neu tren, cac ly thuyet c6 dien xay dung tren quan diem nang lugng voi nguyen ly tat dinh can phai dugc b6 sung bang ly thuyet xay dung tren quan diem thong tin vod nguyen ly tap hgp XU LY SO LIEU VA XAC DINH DO DO Xet he th6ng bom ep nuoc - khai thac dau tren quan diem th6ng tin dieu khien theo m6 hinh sau: i ^115 X, X2 dday: Xn Y, 'Y X = {Xi,X2, Xn}: tap hgp cae phan tir dau vao ciia he th6ng (sir kien bom ep nuoc) Y = {Yi,Y2, Yn}: tap hgp cac phan tir dau ciia he thing (su kien khai thae dhu) ™ >16 hinh digu khign he th6ng bom ep nu-pc - khai thac dSu cong nghe khai thacdauJvM ^ - Nhieu nen, no "hap thu" mot lugng th6ng tin tir X nuac thay thi dau lam nin de tri ap suht via, no co them tinh nhieu cong ti nuoc bat dau xuat hien dau Di tim moi quan he nhan qua gitra X, va Yj nao d6 vimg la tim each dinh lugng th6ng tin vl sir phan h6i ciia cap d6i tugng tac dong (X|,Yj) Do mau sl lieu bat cap theo hang doc nen kh6ng phu thuoc m6c thoi gian De xac dinh sir thay dii ciia gia tri y, (san lugng khai thac dau tan/thang) theo gia tri Xj (kh6i lugng bom ep nuoc m^/thang) ta sap xep s6 lieu cac phan tir eiia Xj theo hang va phan tir ciia Yj tuong img theo X, Thuc hien phep so sanh timg gia tri phan tir ciia Yj tuong d6i voi theo thir tu truoc, sau Cae dau © dugc xem la co phan iing tuong quan Ty s6 cac dau duong tren t6ng s6 cac phep so sanh dugc goi la xac xuat tien nghiem ciia sir kien dong thai (X„Yj) quan he nhan qua X i l + YJ -i- + + _ Bang 10 - + + + + + + - + + -1- - + - -1- - + -t- -1- -1-H + -1-t-I- 23 n{n-\) day: P(Xj,yj): Xac xuat tien nghiem gitra sir kien X, va Yj D (+): T6ng s6 dau + ciia phep so sanh d6i mot truoc sau n{n-\) X X , , , , : I ong so phep so sanh S6 lieu xir ly P(Xi,yj) mang y nghia th6ng tin va phii hgp vai do th6ng tin l(x,) = lg[P(Xi)] Tuy nhien, he thong cua chiing ta la dii tugng vat ly cu thi: he thiiy m6i truang tham, nirt ne bat d6ng nhat, kh6ng dang huong nen chiing c6n phai th6a man cac dilu kien ciia do tren quan diem tap hgp Do la do kolmogorov, o day chiing ta tap trung kiem tra sir phii hgp ciia sl lieu xir ly voi do kolmogorov Qua trinh bom ep nuoc - khai thac dau duge bilu dien bang ng6n ngii- toan hoc nhu sau: Qua trinh khai thac dau: Hy lugng dau khai thac duge = [jK lugng dau bi nuoc chiem ch6 + n^' I lugng dau lai via (2) 711 Tuygn tap bao cao Hoi nghi KHCN "30 nam Dau Viet Nam: Co" hoi moi, thach thuc moi" Gia sir he thing tri ap suat via co dinh, viec thay thi the tieh dau m6i truong via boi nuoc bom ep dugc thu toan bo vao san lugng cac gieng khai thae San lugng ciia cac gilng chi phu thuoc vao uu the vi tri va van t6c luu chat (kh6ng gian, thai gian) djch chuyin via din cac gieng mot each ngau nhien va dau dich chuyen via hoae din gilng nay, hoae sang gieng kbac ma kh6ng the hien dien o ca nhieu gieng ciing luc Thing ke san lugng dau khai thae hang thang (la cae phan tir ciia tap hgp Yj (j = I ^ m) a cac gieng la d6c lap th6ng ke nen tap hgp [Y] kh6ng co phan giao gitra cac phan tir Nhu vay, [Y] co tinh chat xung khae timg d6i mot va boat dong ciia m6i gieng la mot phan tir doc lap he th6ng nen tap [Y] g6m bo sir kien {Yj, Y2, Ym} la doc lap t6ng the vi s6 lieu xir ly P(XY) la ket qua d6ng thoi ciia quan he nhan qua nen ta co the lap mat phang trang thai ciia cac phan tir nhu sau (Bang 2): Bang Yi Y,„ Y2 X, P(xi.yi) P(xi,y2) P(xi,ym) xi P(x2,yi) P(X2,y2) P(X2,ym) Xn P(xn,yi) P(Xn,y2) P(Xn,ym) Va quan he xac suat : P ( Y , Y J = P(Y,).P(Y2) P(YJ (dge lap, d6ng thai) (3) Mat kbac, m6 hinh th6ng tin kh6ng gian - thai gian ciia chat luu chuyen dong via co cau true kh6ng ap dat, no dugc phan b6 theo nhu hien trang tu nhien cua via; hieu suat thu h6i dau cang cao ta tang dan mat gieng khoan mang Vi vay, neu ta them Ym+i Y^+i vao mang khoang each gan anh huong qua lai ciia cac gieng Ion nen san lugng ciia timg gieng se giam Tren quan diem toan hoc ta co the tang cac phan tir [Y] den vo ban va san lugng m6i gieng tien dan den 0, ta co: [YnJ CO tinh chat Y^, ^ Y^+i va Y,Y2 Y,„ = V, thi P(Y,) n T ^ ^ => I(Y„0-l^r^r::r (4) Nhu vay, tap [Y] la truong boren hoan toan th6a man do Kolmogorov Tuong tu d6i voi tap [X] Qua trinh bom ep nuac: 'I lugng nuac bom ep tir cac gieng n n lugng nuac chiem cho dau via Trong kh6ng gian via hai qua trinh [jX, lirgng nuoc khai thac dugc va p | X , la dii lap theo thod gian, gilng khai thac bat dau ngap nuoc, mot phan nuac bom ep tir dau vao chuyin dong thing din dau khong thay the the tich dau via nen lugng nuac tren khong mang theo lugng th6ng tin nao giQ-a dau vao [X] va dau [Y] Vi sl lieu xir ly la san lugng dau thu dugc 712 M6 hinh dilu khign he thong bom ep nuoc - khai thac dau cong nghe khai t h a c j i a u j ^ nuac chiem eho chir kh6ng tinh phan nuoc ciing chay vao gilng khai thac, vi vay m6 hinh th6ng tin ta co the quy nguyen nhan ciia viee suy giam mli quan he gitra nuoc bom ep va dau khai thac ngap nuoc la vi nhieu va ngap nuac cang nhilu thi nhieu cang Ion Nhu vay, via bat dau ngap nuoc ngoai nhieu nen £, se xuht hien them nhieu cong £,!• Va tren quan diem th6ng tin lugng tin tap Q X, da tra nhieu eong: f I N, thong tin ~ (6) ^ H{X) eng bi ngap nuoc - Tang I{x,) < H{X) bang each bom chung (giam khii lugng bom ep) - Truong hgp /(x,) « H{X) thi khii lugng bom ep giu nguyen (du bii) • Ddi v&i vung /.Giai doan din thang 9/2002 ta co (Hinh 9): Entropy H(x) va h$ so' Rs(X) Vung I 2.5 _ ^ _, « • • 12/01 9/02 1.5 w- s———B—" ' ar — * a—• 0.5 6/97 3/98 12/98 9/99 6/00 Thdi gian Hinh 3/01 Tuyin tap bao cao Hoi nghj KHCN "30 nam D5u Viet Nam: Co hoi moi, thach thuc moi' 723 He s l hieu dung cua vung I hien (9/2002): 0,8599 Sir thay dii entropy chu ylu b l sung them cac gilng bom ep he th6ng S6 lugng gieng bom ep: gieng Tai thoi dilm thang 9.2002, ta c6: I ( I ( / ( I ( X ) 830376 82 / ( - 91 I ( - 91 I 'Wljil I ( - 91 / ( - 92 H(X)vungi 40 47 923247 97744 ; ; 313242 = Z ^ ( ^ ' ) * ^ ( ^ - ) = 1-989364 i=\ Nhu vay, tai viing I cac gilng: 5-40; 2-82; 8-91: kh6ng boat dgng; 4-91: giQ: nguyen kh6i lugng bom ep(dii bii); 1-92: phai bom cang (tang khii lugng bom ep; 1-91; 7-47: phai bom chiing (giam khoi lugng bom ep) b Diiu khiin khai thac ddu Theo tieu chuan da xet tuong tu nhu tren • Ddi v&i vung I: Giai doan den thang 9/2002 (Hinh 10): H(Y) va Rs(Y) Viing I ^ 3.5 • " ^ , -— - ^ ~ - _ - - - ' ^ ~~^ • 2.6 J 1.5 . , ———— _, 0.5 - '97 3/98 12/98 9/99 6/00 3/01 • 12/01 9/0 Thtli gian Hinh 10 He s l hieu dung cua vimg I hien (9/2002): 0,55785 Nhu vay, vimg c6 he s6 khai thac thap nhieu gilng bi ngap nuoc chua dugc sira chiia Tuy nhien, hieu suat bom ep vin cao nen vin tri dugc hieu qua khai thac cua he th6ng S l lugng gilng khai thac: 15 gilng Tai thai dilm 9/2002 ta c6: 724 M6 hinh digu khign he thong bom ep nu-oc - khai thac dau cong nghe khai t l i a c j l a u j ^ / ( / ( 1 ( I ( Y ) y,i„g/ 40 ) \ 40 ) 41 ) / ( 41 ) / ( 43 ) / ( / ( 44 ) 47 ) / ( / ( 90 -^ J = ) 90 ) / ( 90 / ( 90 ) / ( 91 / ( 92 ) / ( 80 ) 80 f 192926 069839 989528 ) V 21781 872541 0 740098 780461 427361 34453 V 093151 H(Y)vung = 3,370059 Nhu vay a viing I cac gilng: 5-44; 4-47; 1-90; 3-90; 0-92: kh6ng boat dong; 0-91; 280: gitr nguyen; 2-90; 4-90: tang c6n; 4-40; 7-40; 1-41; 2-41; 0-43; 3-80: giam c6n KET LUAN M6 hinh th6ng tin phu hgp vai he th6ng dieu khien dang phi tuyen kh6ng phu thuoc tuong minh vao thai gian autonom hoae non-autonom D6i voi he th6ng bom ep nuoc khai thac dau via da bi ngap boi cac luoi nuoc, he th6ng kh6ng c6n tu dieu chinh mat tinh phan h6i tu nhien nen kh6ng the dieu chinh H(Y) va H(Yj) dau dugc ntra nhung viec cue dai h6a entropy dau vao van c6 tac dung cho den chiing tro nen bao hoa Chuan bi cho qua trinh bao h6a la b6 sung them gieng, sira chira, each ly gieng ngap nuac Entropy ciia he th6ng cue dai d6ng nghia voi bae tu ciia nuoc bom ep dich chuyen moi truong via ciia he thong la Ion nhat, dieu khien nuoc di theo moi duong c6 the tir gieng bom ep den cac gieng khai thac vung chii kh6ng phai theo duong ngan nhat, chinh la yeu to tang he s6 quet ciia he th6ng TAI LIEU THAM KHAO Dang van Chuyet, Nguyen Tuan Anh, 1998 Ca s& ly thuyit truyin tin NXB Giao due Tap l,tr 5, 13,75-80 Biii C6ng Cuong, Biii Minh Tri, 1997 Gido trinh xdc sudt thong ki vd thdng ki ung dung NXB Giao th6ng Van tai, tr 25 - 27 Nguyen Phuoc Doan, Pham Xuan Minh, 1999 Hi phi tuyin NXB Khoa hoc va Ky thuat, tr 39 - 40 Nguyin Dire D6ng, Nguyen Van Vinh, 2Qi)\ Logic todn NXB Thanh Hoa, tr 114 Tuygn tap bao cao HQi nghi KHCN "30 nam Phu Viet Nam: Co' hoi moi, thach thuc moi" 725 Duong Ngoc Hai, Dang TbI Ba, 1996 Md phdng sd d&ng chdy nhiiu pha mdi tru&ng xdp Tuyin tap bao cao khoa hoc 15 nam XNLD Vietsovpetro (1981 - 1996) tr 449-455 Vu Thanh Khilt, 1996 Gido trinh nhiet ddng luc hoc vd vgt ly thdng ki Dai hoe Qu6c gia Ha Noi, tr 139- 150 Ting Dinh Quy, 1999 Gido trinh xdc sudt thdng ki NXB Giao due, tr 16 - 18 Nguyin Thanh Son, Ly thuyit tap hgp NXB Khoa hoc va Ky thuat, tr 27 - 44 Tran H6ng Phong, Phung Dinh Thue, 1999 Ddnh gid, diiu khiin qud trinh bom ip nu&c - khai thde ddu tdng mdng trung tdm md Bgch Hd bdng phuang phdp phdn tich tuong quan Tap chi Dau khi, S6 ^ X /• r 10 Tran H6ng Phong, 2001 Ung dung ly thuyit thdng tin - Kolmogorov nghiin cun cdc he phi tuyin khdng phu thudc tucmg minh vdo th&i gian Hoi nghi khoa hoc ky niem 20 nam lap XNLD Vietsovpetro va khai thac tan dau 100 trieu 11/2001 l.Tran H6ng Phong, Tran Le D6ng va n.n.k., 2003 lfng dung nguyin ly thdng tin Kolmogorov thiit ki khai thde tdng mdng md Bgch Hd Hoi nghi khoa hoc ky niem 20 nam lap XNLD Vitespvpetro va khai thac tan dau 100 trieu 11/2001 12.Tran H6ng Phong, Tran Le D6ng va n.n.k., 2003 Ung dung nguyen ly thdng tin Kolmogorov thiit ki khai thde tdng mdng md Bgch Hd Tap chi Tia sdng - Bo Khoa hoc va C6ng nghe, S l 18, 10/2003, tr 48 - 49 13./I,aHHJT0B B.Jl., Kau P.M., 1980 FudpoduHaMunecKue pacnemu esauMuoeo ebimecueuuH oicudKocmeu e nopucmod cpede MocKBa, Heapa, 264c \4.CmamucmuHeeKaH MamcMamuxa Bbicmaa mKOJia, MocKsa, 1991 15.MHp3a/i)KaH3aAe A.X., CyjixaHOB H.A., 1995 /JuaKonmuKa uecpmeomdaHU nnacToe A3ep6aHZi5KaH, BaKy, cxp - 10, 77 - 79 16.MHp3a;t>KaH3a;ie A.X., 1997 OpazMenmbi paspadomxu MccmopoDicdenuu BaKy - EJIM, cxp 240 npoqeccoe MopcKux ueipmeeasoetix 17.MHp3a/t>Ka3a;ie A.X., OHjinnnoB B.H., 1998 CucmcMUbie He(pmedo6biHu PMHTK «He4)xeo;]iaHa», MocKea, cxp - uemodhi e 18 A.C MemepHKOB, C A YjibiGHH, 1994 TepModuncmuKa u (peuoMeHOJiozunecKaH McpMOMexanuKa XHMHM, MocKea, cxp 257,312-315 19.H KHXxejib, 1997 CmamucmuHecKOR mepModuncmuKa HayKa, MocKBa, ctp 104 105 20 John Horgan, 1997 The end of science Little, Brown and Company, UK, p 207 - 208 21 James Gleick, 1987 Chaos making a new science Renguin books, p 286, 303 - 307 ... bom ep nuoc - khai thac dau cong nghe khai thjcjlauj^h^ • Diiu chinh sdn lugng khai thde Ngoai viee dieu chinh kh6i lugng bom ep nuoc ta cung nen thuc hien viec dieu ehinh san lugng khai thac de... ly voi do kolmogorov Qua trinh bom ep nuoc - khai thac dau duge bilu dien bang ng6n ngii- toan hoc nhu sau: Qua trinh khai thac dau: Hy lugng dau khai thac duge = [jK lugng dau bi nuoc chiem... cac gieng n n lugng nuac chiem cho dau via Trong kh6ng gian via hai qua trinh [jX, lirgng nuoc khai thac dugc va p | X , la dii lap theo thod gian, gilng khai thac bat dau ngap nuoc, mot phan nuac