1. Trang chủ
  2. » Tất cả

Kinh nghiöm khai th¸c bµi tëp 95 trang 105 (sgk) h×nh häc 9 tëp 2

53 3 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 53
Dung lượng 9,29 MB

Nội dung

Kinh nghiÖm khai th¸c bµi tËp 95 trang 105 (sgk) h×nh häc 9 tËp 2 PHẦN I – ĐẶT VẤN ĐỀ Ở trường phổ thông dạy toán là dạy hoạt động toán học (A A Stôliar) Đối với học sinh, có thể xem việc giải Toán là[.]

PHẦN I – ĐẶT VẤN ĐỀ Ở trường phổ thông dạy tốn dạy hoạt động tốn học (A.A Stơliar) Đối với học sinh, xem việc giải Tốn hình thức chủ yếu hoạt động tốn học Các tốn trường phổ thơng phương tiện có hiệu khơng thể thay việc giúp học sinh nắm vững tri thức, phát triển tư duy, hình thành kĩ năng, kĩ xảo ứng dụng toán học vào thực tiễn Hoạt động giải tập toán điều kiện để thực tốt mục đích dạy học tốn trường phổ thơng Vì tổ chức có hiệu việc dạy giải tập tốn học có vai trị định chất lượng dạy học toán Bài tập toán mang nhiều chức năng: Chức giáo dục, chức giáo dưỡng, chức phát triển tư chức kiểm tra đánh giá Khối lượng tập toán trường phổ thông phong phú, đa dạng Có lớp tốn có thuật giải, phần lớn tốn chưa có khơng có thuật giải Đứng trước tốn đó, giáo viên gợi ý hướng dẫn học sinh để giúp họ tìm phương pháp giải vấn đề quan trọng Tuy nhiên vấn đề khó khăn đưa gợi ý hợp lí, lúc, chỗ cịn nghệ thuật sư phạm người giáo viên Rèn luyện lực giải tốn có vai trị quan trọng việc phát triển khả tư học sinh, để giải tốn học sinh phải suy luận, phải tư duy, phải liên hệ với tốn khác để tìm lời giải; phải biết huy động kiến thức, biết chuyển đổi ngôn ngữ, biến đổi đối tượng Mối liên hệ, dấu hiệu tốn phát thơng qua q trình phân tích, tổng hợp, khái qt hố, so sánh Nguồn gốc sức mạnh Toán học tính chất trừu tượng cao độ Nhờ trừu tượng hoá mà Toán học sâu vào chất nhiều vật, tượng có ứng dụng rộng rãi Nhờ có khái qt hố, xét tương tự mà khả suy đoán tưởng tượng học sinh phát triển, có suy đốn táo bạo, có dựa quy tắc, kinh nghiệm qua việc rèn luyện thao tác tư Thông qua khai thác tập sách giáo khoa toán sáng tạo xây dựng toán làm cho học sinh từ bất ngờ đến bất ngờ khác cách thú vị, làm cho học sinh biết cách thức tạo kiến thức tốn qua ứng dụng vào giải tập tốn Trong q trình dạy học sinh lớp 9, đặc biệt học sinh - giỏi, tổ chức hoạt động khai thác kiến thức tập nhiều tiết dạy khóa, buổi dạy nâng cao, buổi bồi dưỡng học sinh giỏi thu số kết định Thông qua việc khai thác tập giúp học sinh lớp ôn tập kiến thức bản, trọng tâm, làm cho học sinh rèn luyện số phương pháp giải tập, học sinh có kỹ vẽ thêm đường phụ, kỹ tìm tịi lời giải tự tin sáng tạo toán từ tập toán sách giáo khoa Vì lý tơi chọn đề tài nghiên cứu sáng kiến kinh nghiệm là:"Rèn luyện lực giải tốn cho học sinh lớp thơng qua xây dựng tập hình học" LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com PHẦN II- NỘI DUNG A Thực trạng, mục đích phương pháp nghiên cứu Thực trạng vấn đề - Khi giảng dạy lớp gặp tập hình học, tơi thấy học sinh nhiều lúng túng việc vẽ hình, hay tìm định hướng làm bài, đặc biệt học sinh học mức độ trung bình - Giáo viên dạy học sinh giải tập hình học, thường chữa tập xong, khai thác, phân tích đề để mở rộng tốn dẫn đến học sinh gặp toán khác chút không giải - Học sinh thường ngại học hình học kiến thức hình học khơng dễ nhớ, khó tìm phương pháp giải, tốn hình học tổng hợp thường phức tạp, phải áp dụng lúc nhiều kiến thức Mục đích nghiên cứu a Đối với giáo viên: - Nâng cao trình độ chun mơn phục vụ cho q trình giảng dạy - Làm quen với công tác nghiên cứu khoa học nhằm nâng cao kiến thức b Đối với học sinh: - Giúp học sinh lớp rèn luyện lực học tập mơn tốn nói chung việc rèn luyện lực học tập hình học nói riêng Trang bị cho học sinh số kỹ nhằm nâng cao lực học tập mơn tốn, giúp em tiếp thu cách chủ động, sáng tạo - Rèn luyện lực toán cho học sinh lớp 9, khắc phục phần hạn chế kì thi học sinh lớp Phương pháp nghiên cứu - Nghiên cứu lý thuyết thông qua SGK, tài liệu tham khảo học sinh trường Nghiên cứu qua mạng Internet - Nghiên cứu qua việc rút kinh nghiệm, học hỏi thầy cô giáo, đồng nghiệp - Sử dụng phương pháp phân tích, tổng hợp, Kết cần đạt - Trong đề tài đưa số tình khai thác tập sách giáo khoa toán nhằm rèn luyện lực giải toán cho học sinh lớp - Trang bị cho học sinh số kỹ phân tích, nhận xét, khai thác kết toán việc rèn luyện lực giải toán - Thấy vai trị to lớn tập hình học sách giáo khoa, học sinh vận dụng cho số toán khác LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com B Rèn luyện lực giải toán cho học sinh lớp thông qua khai thác phát toán Bài toán gốc ban đầu Bài toán: Các đường cao hạ từ đỉnh A B cắt H( cắt đường tròn ngoại tiếp D E Chứng minh rằng: a) CD = CE b) cân ) c) CD = CH (Bài tập 95 – SGK toán tập trang 105) Phân tích tốn Đây tốn chương trình Hình học 9, tập nhằm củng cố lại kiến thức đường tròn góc với đường trịn, nên để giải tập ta cần rõ cho học sinh phương pháp kiến thức liên quan Cụ thể: a) Để chứng minh CD = CE ta cần chứng minh hai góc nội tiếp chắn hai cung b) Từ kết chứng minh câu a, ta chứng minh tam giác BHD có BM vừa đường cao vừa đường phân giác c) Từ kết chứng minh câu b, ta chứng minh BC đường trung trực HD Từ ta giải toán sau: Bài giải Gọi M, N giao điểm AD với BC BE với AC a) Ta có A E N H ( = 90 ) O Mà B (các góc nội tiếp chắn cung nhau) (Liên hệ cung dây) M D b) Ta có ( hệ góc nội tiếp) BM vừa đường cao vừa đường phân giác) c) Ta có cân B C cân (Vì có đường trung trực HD (vì BC chứa BM) CD = CH ( tính chất đường trung trực ) LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Khai thác toán gốc ban đầu để phát xây dựng tập hình học Xuất phát từ tốn sách giáo khoa toán 9, giáo viên đưa tình khai thác, mở rộng tốn thơng qua hệ thống câu hỏi xây dựng định hướng Từ định hướng đó, học sinh trả lời xây dựng cho tập hình học Qua củng cố kiến thức, nâng cao lực tư sáng tạo, lực giải tốn cho học sinh Tình 1: Xét tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) Các đường cao AM, BN, CP cắt H cắt đường tròn (O) D, E, F Khi tốn xuất tam giác đồng dạng, tứ giác nội tiếp Vậy khai thác kết từ tam giác đồng dạng tứ giác nội tiếp A E N F P B Giáo viên nêu câu hỏi định hướng sau: H O C M D + Định hướng 1: Các tứ giác CNHM, BCNP nội tiếp khơng Vì sao? - Học sinh chứng minh: Xét tứ giác CNHM ta có: Do CNHM tứ giác nội tiếp Tương tự ta có BCNP tứ giác nội tiếp + Định hướng 2: Các ?Xét tương tự cho hai có đồng dạng khơng? so sánh với - Học sinh chứng minh: Xét hai tam giác ANH AMC ta có: chung góc Xét hai tam giác BNC AMC ta có: góc chung + Định hướng 3: Chứng minh cộng vế với vế hai đẳng thức ta kết nào? Áp dụng tương tự thu đẳng thức nào? - Học sinh chứng minh được: AH.AM + BH.BN = AB , BH.BN + CH.CP = BC , AH.AM + CH.CP = AC Công vế với vế ba đẳng thức ta LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com + Định hướng 4: Trong tam giác MNP, DEF trực tâm H có tính chất gì? - Học sinh chứng minh: Tứ giác BCNP nội tiếp đường tròn Cũng theo chứng minh CNHM tứ giác nội tiếp Suy NB tia phân giác góc MNP - Chứng minh tương tự ta có PC tia phân giác góc MPN mà BN CP cắt H H tâm đường tròn nội tiếp tam giác MNP - Mặt khác chứng minh MN//DE, NP//EF, MP//DF H tâm đường tròn nội tiếp tam giác DEF Từ định hướng phát biểu toán Bài toán 1: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) Các đường cao AM, BN, CP cắt H cắt đường tròn (O) D, E, F a) Chứng minh tứ giác CNHM, BCNP nội tiếp b) Chứng minh AN.AC = AH.AM; AM.BC = BN.AC c) Chứng minh AH.AM + BH.BN = AB Từ suy d) Xác định tâm đường tròn nội tiếp tam giác MNP, DEF Tình 2: Xét tam giác ABC có ba góc nhọn nội tiếp đường trịn (O) Các đường cao AM, BN, CP cắt H cắt đường tròn (O) D, E, F Khi cạnh, đường cao diện tích tam giác có mối liên hệ với khơng? Giáo viên nêu câu hỏi định hướng sau: A E N F P B H O C M D + Định hướng 1: Giáo viên nêu câu hỏi liên quan đến tỉ số diện tích tam giác tỉ số đoạn thẳng ?1 Tính , , - Học sinh tính : ; LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ?2 Với kết tính - Học sinh tính ?3 Tương tự giáo viên cho học sinh tính - Từ hệ thức học sinh tính được: ?4 Các điểm D, E, F đối xứng với H qua BC, CA, AB khơng? Khi - Học sinh tính + Định hướng 2: Với p nửa chu vi tam giác ABC, r bán kính đường trịn nội tiếp tam giác ABC Tìm hệ thức liên hệ r AM, BN, CP? - Học sinh chứng minh Vì Mà Nên + Định hướng 3: Giáo viên nêu nội dung câu hỏi để xây dựng hệ thức đoạn thẳng ?1 Chứng minh nêu kết tương tự - Học sinh chứng minh Suy Chứng minh tương tự ta có: ?2 Với kết - Học sinh tính được: + Định hướng 4: Giáo viên nêu nội dung câu hỏi toán bất đẳng thức tỉ số đoạn thẳng LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ?1 Theo bất đẳng thức Cơsi Học sinh có kết ?2 Vậy từ ta Học sinh nêu kết ?3 Tương tự giáo viên yêu cầu học sinh chứng minh ; Từ định hướng phát biểu toán Bài toán 2: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) Các đường cao AM, BN, CP cắt H cắt đường tròn (O) D, E, F a) Chứng minh , b) Chứng minh , với r bán kính đường trịn nội tiếp tam giác ABC c) Chứng minh d) Chứng minh rằng: , Tình 3: Xét tam giác ABC có ba góc nhọn nội tiếp đường trịn (O) Các đường cao AM, BN, CP cắt H cắt đường tròn (O) D, E, F Khi tốn xuất tam giác nhau, góc Vậy khai thác kết cho ta toán nào? Nếu vẽ thêm đường kính AK có thêm kết gì? Giáo viên nêu câu hỏi định hướng sau: A E N J F P B H O G C I M D K + Định hướng 1: Giáo viên nêu câu hỏi khai thác tam giác LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ?1 Hai tam giác tự có khơng Vì sao? Nêu kết tương - Học sinh nêu kết quả: Từ câu b, c toán ta có BD = BH, CD = CH Tương tự ta có ; ?2 Vậy bán kính đường trịn ngoại tiếp liên hệ với nhau? - Học sinh: Các đường tròn ngoại tiếp bán kính đường trịn ngoại tiếp có bán kính + Định hướng 2: Vẽ bán kính OA, dự đốn vị trí tương đối đường thẳng OA NP Học sinh suy luận để tìm kết quả: Từ câu a toán ta có: AE = AF, Vì O tâm đường tròn ngoại tiếp nên OA đường trung trực EF OA Do OA EF NP Chứng minh NP // EF Từ chứng minh Học sinh làm theo cách vẽ thêm tiếp tuyến Ax sử dụng tính chất góc nội tiếp, góc tạo tia tiếp tuyến với dây cung + Định hướng 3: Gọi I trung điểm BC , K điểm đối xứng với H qua I tứ giác BHCK Ba điểm A, O, K thẳng hàng không? - Học sinh chứng minh tứ giác BHCK hình bình hành Từ ta có BK // CH Mặt khác nên vng B Suy AK đường kính (O) hay A, O, K thẳng hàng + Định hướng 4: Gọi J trung điểm củaAH Giáo viên cho học sinh dự đốn tính chất tứ giác BCKD, JOID ?1 Tứ giác BCKD hình gì? - Học sinh chứng minh: Dễ thấy nên DK//BC BCKD hình thang Mặt khác ta có , mà Vậy tứ giác BCKD hình thang cân ?2 Tứ giác JOID hình gì? - Học sinh chứng minh: Tứ giác JOID hình thang IO//DJ, mà OA= OD JI = OA nên IJ = OD Do JOID hình thang cân + Định hướng 5: Gọi G giao điểm AI OH, AI, HO tam giác AHK Trong tam giác ABC, điểm G có tính chất gì? - Học sinh chứng minh: Ta có I trung điểm BC, suy I trung điểm HK LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com Do AI, HO trung tuyến G trọng tâm Xét tam giác ABC có I trung điểm BC Suy G tâm + Định hướng 6: Chứng minh - Học sinh chứng minh: Tứ giác ABDC nội tiếp nên theo định lí Ptoleme ta có AB.CD + AC.BD = AD.BC Mà Suy Từ định hướng phát biểu toán Bài tốn 3: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) Các đường cao AM, BN, CP cắt H cắt đường tròn (O) D, E, F Gọi I, J trung điểm BC AH, K điểm đối xứng với H qua I a) Chứng minh bán kính đường trịn ngoại tiếp tam giác bán kính với đường trịn ngoại tiếp b) Chứng minh OA EF c) Chứng minh tứ giác BHCK hình bình hành A, O, K thẳng hàng d) Chứng minh tứ giác BCKD, JOID hình thang cân e) Gọi G giao điểm AI OH Chứng minh G tâm g) Chứng minh Tình 4: Xét tam giác ABC có ba góc nhọn nội tiếp đường trịn (O) Các đường cao AM, BN, CP cắt H Nếu tiếp tục khai thác từ tam giác đồng dạng ta thu kết nữa? Từ tốn ta có OA NP, khai thác từ kết luận khơng? Giáo viên nêu câu hỏi định hướng sau: A N J P O H B M D C I K + Định hướng 1: Vẽ đường kính AK Giáo viên nêu câu hỏi khai thác tính đồng dạng tam giác LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ?1 Chứng minh hai tam giác vng ABM AKC đồng dạng tính AM theo bán kính R - Học sinh: Xét hai tam giác vng ABM AKC có giác đồng dạng .Nên hai tam Suy ?2 Từ kết ?1, lập cơng thức tính diện tích tam giác ABC - Học sinh tính được: + Định hướng 2: Giáo viện khai thác kết OA NP từ toán ?1 Tính diện tích tứ giác ONAP, OMBP, OMCN theo R - Học sinh tính ; ?2 Vậy diện tích tam giác ABC tính theo R nào? - Học sinh: Suy Tức + Định hướng 3: Gọi r' bán kính đường trịn nội tiếp trường tròn tâm O Giáo viên nêu câu hỏi sau ?1 Chứng minh Nêu kết tương tự - Học sinh chứng minh ?2 Khi MNP, R bán kính nêu kết tương tự ? - Học sinh: Ta có ?3 Khi diện tích tam giác MNP tính theo r’ nào? - Học sinh: Theo cơng thức ta có ?4 Với kết 10 LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com ... thơng qua khai thác phát toán Bài toán gốc ban đầu Bài toán: Các đường cao hạ từ đỉnh A B cắt H( cắt đường tròn ngoại tiếp D E Chứng minh rằng: a) CD = CE b) cân ) c) CD = CH (Bài tập 95 – SGK... minh rằng: a) CD = CE b) cân ) c) CD = CH (Bài tập 95 – SGK tốn tập trang 105) Phân tích tốn Đây tốn chương trình Hình học 9, tập nhằm củng cố lại kiến thức đường trịn góc với đường trịn, nên... download : add luanvanchat@agmail.com Khai thác toán gốc ban đầu để phát xây dựng tập hình học Xuất phát từ toán sách giáo khoa toán 9, giáo viên đưa tình khai thác, mở rộng tốn thơng qua hệ thống

Ngày đăng: 14/11/2022, 15:12

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w