ĐỀ TOÁN MỚI NHẤT 2014 P7
TRƯỜNG THPT ĐẶNG THÚC HỨA Thanh Chương – Nghệ An ĐỀ THI THỬ ĐẠI HỌC LẦN 1 - NĂM 2013 Môn thi: TOÁN; Khối: A Thời gian làm bài: 180 phút, không kể thời gian phá t đề. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm): Câu I (2,0 điểm) Cho hàm số 3 2 3 4 (1) y x x = − + 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Gọi d là đường thẳng đi qua điểm (1;2)M với hệ số góc . k Tìm k để đường thẳng d cắt đồ thị hàm số (1) tại 3 điểm phân biệt , , M A B sao cho 2 AB OM = . Câu II (2,0 điểm) 1. Giải phương trình sin 3 4 sin tan tan 3 3 6 x x x x π π π + − = + − 2. Giải hệ phương trình 2 2 1 1 1 1 4 x y x xy x y x y x y + − − = − + − = + + Câu III (1,0 điểm) Tính tích phân 2 2 2 2 2 1 2 ln( 1) ( 1)ln ( 1) x x x x I dx x + − + = + ∫ Câu IV (1,0 điểm) Cho hình chóp . S ABC có đáy ABC là tam giác cân tại A , 2 AB a = , 0 120 . BAC = Biết 0 90 SBA SCA = = , góc giữa hai mặt phẳng ( ) SBC và mặt phẳng ( ) ABC bằng 0 45 . Tính thể tích khối chóp . S ABC theo a , tính góc giữa mặt phẳng ( ) SAB và mặt phẳng ( ). ABC Câu V (1,0 điểm) Cho các số thực dương , , x y z thoả mãn 1 4 . x y z xyz + + + = Chứng minh rằng xy yz zx x y z + + ≥ + + PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một tr ong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ , Oxy cho tam giác ABC có 0 135 BAC = , đường cao : 3 10 0 BH x y + + = , trung điểm cạnh BC là 1 3 ; 2 2 M − và trực tâm (0; 10) H − . Biết tung độ của điểm B âm. Xác định toạ độ các đỉnh , , A B C và viết phương trình đường tròn ngoại tiếp tam giá c . ABC 2. Trong không gian với hệ toạ độ , Oxyz cho mặt cầu 2 2 2 ( ) : 4 2 4 9 0 S x y z x y z + + − − − − = . Viết phương trình mặt phẳng ( ) P đi qua điểm ( 1;1; 1) M − − song song với đường thẳng 1 3 3 : 2 1 2 x y z d − + − = = − − và cắt mặt cầu ( ) S theo đường tròn ( ) C có chu vi bằng 6 . π Câu VII.a (1,0 điểm) Tìm số phức z thoả mãn | 1 | 2 | | 2 iz iz z + = − = B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ , Oxy cho tam giác ABC có trực tâm H , phương trình cạnh : 4 0, BC x y − + = trung điểm cạnh AC là (0;3) M , đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại điểm (7; 1). N − Xác định toạ độ các đỉnh , ,A B C và viết phương trình đường tròn ngoại tiếp tam giác .HBC 2. Trong không gian với hệ toạ độ , Oxyz cho mặt phẳng ( ) : 1 0 P x y + + = và hai điểm (1;1; 1), (2;0;3). A B − Xác định toạ độ điểm M trên mặt phẳng ( ) P sao cho tam giác ABM có 0 45 MAB = và nằm trong mặt phẳng vuông góc với mặt phẳng ( ).P Câu VII.b (1,0 điểm) Từ các số tự nhiên 0,1,2, 5, 7, 8,9 lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau sao cho mỗi số lập được luôn có mặt chữ số 9 và có tổng các chữ số là một số chẵn. Hết www . l a i s ac . pa g e. tl Cảm ơnbạnHienDinhTran(dinhhientc@gmail.com)gửitớiwww.laisac.page.tl Khóa học LTðH ñảm bảo môn Toán – Thầy Phan Huy Khải ðề thi thử ñại học số 0 4 Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 1 - I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 ñiểm) Câu I: (2 ñiểm) Cho hàm số: 4 2 2 2 2 y x mx m = + + + có ñồ thị ( ) m C 1. Khảo sát sự biến thiên và vẽ ñồ thị hàm số khi m = -2. 2. Với giá trị nào của m thì ñồ thị ( ) m C có ba ñiểm cực trị, ñồng thời ba ñiểm cực trị ñó lập thành một tam giác có một góc bằng 120 0 . Câu II: (2 ñiểm) 1. Giải phương trình: 3 2cos cos 2 sin 0 x x x + + = 2. Giải phương trình: 2 2 2 4 4 2 9 16 x x x + + − = + Câu III : (1 ñiểm) Tính thể tích khối tròn xoay tạo nên khi ta quay quanh trục O x hình phẳng S giới hạn bởi các ñường: ; 1; 0 (0 1) x y xe x y x = = = ≤ ≤ Câu IV : (1 ñiểm) Cho hình chóp S.ABCD có ñáy ABCD là hình thoi ; hai ñường chéo AC = 2 3 a , BD = 2a và cắt nhau tại O; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ ñiểm O ñến mặt phẳng (SAB) bằng 3 4 a , tính thể tích khối chóp S.ABCD theo a. Câu V: (1 ñiểm) Cho x,y ∈ R và x, y > 1. Tìm giá trị nhỏ nhất của ( ) ( ) 3 3 2 2 ( 1)( 1) x y x y P x y + − + = − − PHẦN RIÊNG (3 ñiểm) A. Theo chương trình chuẩn Câu VIa: (2,0 ñiểm). 1) Trong mặt phẳng với hệ tọa ñộ Oxy , cho tam giác ABC với hai trung tuyến : 2 0, : 7 6 0, AN x y BM x y + − = + − = ñỉnh B(1 ; -1). Biết tam giác ABC có diện tích bằng 2. Xác ñịnh tọa ñộ các ñỉnh A, C của tam giác. 2. : Trong không gian với hệ tọa ñộ Oxyz, cho ñiểm M(2 ; 1 ; 0) và ñường thẳng d với d : 1 1 2 1 1 x y z − + = = − . Viết phương trình chính tắc của ñường thẳng ñi qua ñiểm M, cắt và vuông góc với ñường thẳng d và tìm tọa ñộ của ñiểm M’ ñối xứng với M qua d. Câu VII.a : (1 ñiểm) Giải phương trình nghiệm phức : 25 8 6 z i z + = − B. Theo chương trình nâng cao Câu VIb: (2,0 ñiểm). 1. Trong mặt phẳng hệ tọa ñộ Oxy , cho ñường tròn (C) có phương trình: 2 2 2 6 6 0 x y x y + − − + = và ñiểm M(-3; 1). Gọi A và B là các tiếp ñiểm kẻ từ M ñến (C). Tìm tọa ñộ ñiểm H là hình chiếu vuông góc của ñiểm M lên ñường thẳng AB. ðỀ THI THỬ ðẠI HỌC SỐ 04 MÔN: TOÁN Giáo viên: PHAN HUY KHẢI Thời gian làm bài: 180 phút Khóa học LTðH ñảm bảo môn Toán – Thầy Phan Huy Khải ðề thi thử ñại học số 0 4 Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 2 - 2. Trong không gian với hệ trục tọa ñộ Oxyz, cho ñường thẳng ∆ : 1 3 1 1 4 x y z − − = = và ñiểm M(0 ; - 2 ; 0). Viết phương trình mặt phẳng (P) ñi qua ñiểm M song song với ñường thẳng ∆ ñồng thời khoảng cách giữa ñường thẳng ∆ và mặt phẳng (P) bằng 4. Câu VIIb: (1,0 ñiểm) Tìm số phức z thỏa mãn ñồng thời hai ñiều kiện sau: 1 2 3 4 z i z i + − = + + và 2 z i z i − + là một số ảo. Giáo viên : Phan Huy Khải Nguồn : Hocmai.vn 0 TRƯỜNGTHPTCHUYÊNVĨNHPHÚC KỲTHITHỬĐẠIHỌCLẦN1NĂMHỌC20122013 Môn:Toán12.Khối B -D Thờigianlàmbài:150phút(Khôngkểthờigiangiaođề) PHẦNCHUNGCHOTẤTCẢTHÍSINH(8,0 điểm) CâuI.(2,5 điểm) Chohàmsố 3 2 3 4y x x = - - + ( ) 1 1. Khảosátsựbiến thiênvàvẽđồthịcủahàmsố ( ) 1 . 2.Vớinhữnggiátrịnàocủa m thìđườngthẳngnốihaicựctrịđồth ịcủahàmsố ( ) 1 tiếp xúc vớiđườngtròn ( ) ( ) ( ) 2 2 : 1 5C x m y m - + - - = CâuII. (2,5 điểm) 1. Giảiphươngtrình: ( ) ( ) 2 3 2cos cos 2 sin 3 2cos 0x x x x + - + - = 2. Giảihệphươngtrình: 2 2 3 2 8 12 2 12 0 x y x xy y + = ì í + + = î ( , )x y Ρ CâuIII.(1,0điểm) Tìmgiớihạn: 2 3 1 7 5 lim 1 x x x L x ® + - - = - CâuIV.(1,0 đ iểm) Chotứdiện ABCD có ADvuônggócvớimặtphẳng ( ) ABC , 3 ; 2 ; 4 ,AD a AB a AC a = = = · 0 60BAC = .Gọi ,H K lần lượt làhình chiếu vu ông góc của B trên AC và CD .Đường thẳng HKcắtđườngthẳng AD tại E .Chứngminhrằng BE vuônggócvới CD vàtínhthể tíchkhốitứdiện BCDE theoa. CâuV.(1,0 điểm) Tìmgiátrịlớnnhấtvàgiátrịnhỏnhấtcủahàmsố 2 1 4 1 2 x x y x x - - + = + - + PHẦNRIÊNG (2,0 điểm).Thísin hchỉ đượclàmmộttronghaiphần(phầnAhoặcB) A.TheochươngtrìnhChuẩn Câu VI.a. (1,0 điểm ) Cho tam giác ABC có ( 2;1)B - , đường thẳng chứa cạnh AC có phương trình: 2 1 0x y + + = , đường thẳng chứa trung tuyến AM có phương trình: 3 2 3 0x y + + = .Tínhdiệntíchcủatamgiác ABC . CâuVII.a.(1,0 điểm) Tínhtổng: 0 1 2 3 2012 2012 2012 2012 2012 2012 2 3 4 2013S C C C C C = + + + + + B.Theochương trìnhNângcao Câu VI.b. (1,0 điểm) Trongmặtphẳng vớihệ trụ c toạ độ Oxy , cho điểm ( ) 1;0E - và đườngtròn ( ) 2 2 : 8 4 16 0C x y x y + - - - = .Viế tphươngtrìnhđư ờngthẳngđiquađiểm E c ắt đườngtròn ( ) C theodâycung MN cóđộd àingắnnhất. CâuVIIb.(1,0điểm) ChokhaitriểnNiutơn ( ) 2 2 2 2 * 0 1 2 1 3 , n n n x a a x a x a x n - = + + + + Î L ¥ .Tínhhệ số 9 a biết n thoảmãnhệthức: 2 3 2 14 1 . 3 n n C C n + = Cảm ơn thầy Nguyễn Duy Liên (lientoancvp@vinhphuc.edu.vn)gửitới http://www.laisac.page.tl/ Đềchínhthức (Đềthigồm01trang) 1 ĐÁPÁN THANG ĐIỂM KỲKHẢOSÁ TCHẤTLƯỢNGTHIĐẠIHỌC CAOĐẲNGNĂMHỌC20122013 Môn:Toán;Khối:B+D (Đápán–thang điểm:gồm05trang) Câu Đápán Điểm 1. (1,0điểm) 3 2 3 4y x x = - - + +Tậpxácđịnh: D = ¡ +Sựbiếnthiên : Chiềubiếnthiên: 2 2 ' 3 6 , ' 0 0 x y x x y x = - é = - - = Û ê = ë Hàmsốđãchonghịch biếntrêncá ckhoảng ( ) ; 2 -¥ - và ( ) 0;+¥ , đồngbiếntrênkhoảng ( ) 2;0 - . 0,25 Cựctrị: Hàmsốđạtcựcđạitại C (0) 0; 4 Đ x y y = = = Hàm sốđạtcựctiểutại CT ( 2) 2; 0x y y - = - = = Giớihạn: lim ; lim x x y y ®-¥ ®+¥ = +¥ = -¥ 0,25 Bảngbiến thiên: x -¥ 2 0 +¥ , y - 0 + 0 - y +¥ 0 4 -¥ 0,25 +Đồthị 0,25 2. (1,0điểm) I (2,0điểm) Đồthịhàmsố(1)cócựctiểu ( ) 2;0A - ,cự cđại ( ) 0;4B .Phươngtrình đư ờngthẳngnốihaicựctrịcủahàmsố(1)là: ( ) : 1 2 4 x y AB + = - ( ) : 2 4 0AB x y Û - + = ( ) ( ) ( ) 2 2 : 1 5C x m y m - + - - = cótâm ( ) ; 1I m m + bán kính 5R = 0,50 Đườngthẳng ( ) AB tiếpxúcvớiđườngtròn ( ) ( ) ( ) ;C d I AB R Û = ( ) ( ) 2 2 2 1 4 8 5 3 5 2 2 1 m m m m m - + + = - é Û = Û + = Û ê = ë + - 0,50 Đápsố: 8m = - hay 2m = 2 CõuII 1.(1,25im) (2,5i m) Pt: ( ) ( ) 2 3 2cos cos 2 sin 3 2cos 0x x x x + - + - = ( ) 2 2 3 1 sin 3cos 2 3 3sin 2sin cos 0x x x x x - + - + - = ( ) ( ) 3 sin 3 2sin cos 3 2sin 0x x x x - + - = 0,50 ( )( ) 3 2sin 0 3 2si n 3sin cos 0 3sin cos 0 x x x x x x ộ - = - + = ờ + = ờ ở 0,25 2 3 3 sin 2 2 2 3 1 tan 3 6 x k x x k x x k p ộ = + p ờ ộ ờ = ờ p ờ ờ = + p ờ ờ = - ờ ờ p ở ờ = - + p ờ ở ( ) k ẻZ 0,25 Phngtrỡnhcúbahnghim 2 2 2 3 3 6 x k x k x k p p p = + p = + p = - + p ( ) k ẻZ 0,25 2.(1,25im) Hphngtrỡnh ( ) ( ) 2 2 3 2 8 12 * 2 12 0 ** x y x xy y + = ỡ ù ớ + + = ù ợ Th(*)vo(**)tac: ( ) 3 2 2 2 2 8 0 x xy x y y + + + = 0,25 ( ) ( ) ( ) 3 3 2 2 8 2 0 2 2 4 0x y xy x y x y x xy y xy + + + = + - + + = 0,25 Trnghp1: 2 0 2x y x y + = = - thvo(*)tac 2 2 12 12 1 1 2y y y x = = = ị = m 0,25 Trnghp2: 2 2 2 2 0 15 4 0 0 2 4 0 2 y y y x xy y x y x = ỡ ù ổ ử - + = - + = ớ ỗ ữ - = ố ứ ù ợ 0x y ị = = khụngthomó n(*)hvn 0,25 ỏps: ( ) ( ) ( ) 2 1 , 21x y = - - 0,25 CõuIII (1,0im) 2 2 3 3 1 1 1 7 5 7 2 2 5 lim lim lim 1 1 1 x x x x x x x L x x x đ đ đ + - - + - - - = = + - - - 0,25 ( ) ( ) ( ) ( ) ( ) 2 2 3 221 1 3 3 2 5 7 2 lim lim 1 2 5 1 7 2 7 4 x x x x x x x x x đ đ - - + - = + ổ ử - + - - + + + + ỗ ữ ố ứ 0,25 ( ) ( ) 22 1 1 3 3 1 1 1 1 7 lim lim 12 2 12 2 5 7 2 7 4 x x x x x x đ đ + = + = + = ổ ử + - + + + + ỗ ữ ố ứ 0,25 3 Vy: 7 12 L = 0,25 CõuIV (1,0im) Vỡ ( ) BH AC BH AD BH ACD BH CD ^ ^ ị ^ ị ^ m ( ) BK CD CD BHK CD BE ^ ị ^ ị ^ 0,25 Tgtt acú 0 2 2 1 1 3 sin 60 8 2 3 2 2 2 ABC S AB AC a a D = ì ì = = 0 1 cos60 2 . 2 AH AB a a = = = 0,25 Vỡ ( ) CD BHK CD KE AEH A CD ^ ị ^ ị D D : doú 4 4 13 3 3 3 3 AE AH AH AC a a a AE DE a AC AD AD ì = ị = = ị = + = 0,25 3 2 . . 1 1 13 26 3 2 3 2 3 3 9 BCDE D ABC E ABC ABC a a V V V DE S a D ì = + = ì ì = ì ì = 0,25 CõuV (1,0im) 2 1 4 1 2 x x y x x - - + = + - + Tpxỏcnhcahm sl [ ] 01D = t cos 0 2 1 sin x t t x t ỡ = p ổ ử ù ộ ự ẻ ớ ỗ ữ ờ ỳ ở ỷ ố ứ - = ù ợ 0,25 Khiú ( ) 2cos sin 4 cos sin 2 t t y f t t t - + = = + + vi 0 2 t p ộ ự ẻ ờ ỳ ở ỷ 0,25 xộthms ( ) 2cos sin 4 cos sin 2 t t f t t t - + = + + vi 0 2 t p ộ ự ẻ ờ ỳ ở ỷ ( ) ( ) ' 2 3 6cos 0 0 2 sin cos 2 t f t t t t - - p ộ ự = < " ẻ ờ ỳ + + ở ỷ vyhms ( ) f t liờntcv nghchbintrờnon 0 2 p ộ ự ờ ỳ ở ỷ 0,25 doú ( ) ( ) ( ) 0 0 1 2 0 2 2 2 f f t f t f t t p p p ổ ử ộ ự ộ ự Ê Ê " ẻ Ê Ê " ẻ ỗ ữ ờ ỳ ờ ỳ ố ứ ở ỷ ở ỷ giỏtrlnnhtca ( ) ( ) max 0 2 0 0y f t f t x = = = = = giỏtrnhnhtca ( ) min 1 1 2 2 y f t f t x p p ổ ử = = = = = ỗ ữ ố ứ 0,25 cõuVIA (1,0im) Do :C dt ẻ 2 2 1 0 ( , 2 1) , 2 a x y C a a M a - ổ ử + + = ị - - ị - ỗ ữ ố ứ :M dt ẻ 3 2 3 0 0 (0, 1)x y a C + + = ị = ị - . To A lnghimh 3 2 3 0 (1, 3) ( 1, 2) 5 2 1 0 x y A AC AC x y + + = ỡ ị - ị - ị = ớ + + = ợ uuur 0,50 K ( )BH AC H AC ^ ẻ 4 4 1 1 2 1 ( , ) . 1 2 5 5 ABC BH d B AC S AC BH - + + = = = Þ = = (dvdt). Vậy 1 ABC S = (dvdt). 0,50 Câu7A (1,0điểm) 0 1 2 3 2012 2012 2012 2012 2012 2012 2 3 4 2013S C C C C C = + + + + + Tacó ( ) ( ) 1 2012 2012 2012 2012 2011 2012 2012! 1 2012 ! 2012 ! k k k k k k k C kC C k C C C k k - + = + = + = + - với 0,1,2, ,2012k " = 0,25 ( ) ( ) 0 1 2011 0 1 2012 2011 2011 2011 2012 2012 2012 2012S C C C C C C = + + + + + + + L L 0,25 ( ) ( ) 2011 2012 2011 2012 2012 2012 1 1 1 1 2012 2 2 1007 2S = + + + = × + = × 0,25 Vậy 2012 1007 2S = × 0,25 CâuVIB (1,0điểm) Đườngtròn ( )C cóbánkính 6R = vàtâm (4;2)I Khiđó: 29 6 ,IE R = < = suyra điểm E n ằmtronghìnhtròn ( )C . Giảsửđườngthẳng D điqua E cắt ( )C tạiM và N .Kẻ IH ^ D . Tacó ( , )IH d I IE = D £ . 0,50 Nhưvậyđể MN ngắnnhất IH Û dàinhất H E Û º Û D điqua E vàvuônggócvới IE 0,25 Tacó (5;2)EI = uur nênđườngthẳn g D điqua E vàvuônggócvới IE cóphươngtrìnhlà:5( 1) 2 0 5 2 5 0x y x y + + = Û + + = . Vậyđườngthẳngcầntìmcóphươngtrình: 5 2 5 0x y + + = . 0,25 Câu7B (1,0điểm) …. ( ) 2 2 2 2 * 0 1 2 1 3 , n n n x a a x a x a x n - = + + + + Î L ¥ . Tínhhệsố 9 a biết n thoảmãnhệth ức: 2 3 2 14 1 . 3 n n C C n + = Điều kiện * , 3n n Î ³ ¥ 5 ( ) ( ) ( ) ( )( ) 2 14 1 4 28 1 ! ! 1 1 2 3 2! 2 ! 3! 3 ! GT n n n n n n n n n n n Û + = Û + = - - - - - 0,50 2 3 9 7 18 0 n n n n ³ ì Û Û = í - - = î 0,25 Từđó ( ) ( ) 18 18 2 18 0 1 3 1 3 k k k k k x C x = - = - å Dođóhệsốcủa 9 9 1 8 81 3 3938220 3a C = - = - 0,25 Lưu ýkhichấmbài: Đápántrìnhbàymộtcáchgiảig ồmcácýbắtbuộcphảicótrongbàilàmcủahọcsinh. Khichấmnếuhọcsinhbỏquabướcnàothì không cho điểmbướcđó. Nếuhọcsinhgiảicáchkhác,giámkhảocăn cứcácýtrongđápánđểchođiểm. Trongbàilàm,nếuởmộtbướcnàođó bịsaithìcácphầnsaucósửdụngkếtquảsa iđó không đượcđiểm. Điểmtoànbàití nhđến0,25vàkhônglàmtròn. Hết 6 [...]... tính phần thực, phần ảo của z4n , biết rằng n ∈ N thỏa mãn 2 −2n+6) n2 − 2n + 6 + 4log3 (n = (n2 − 2n + 6)log3 5 ———————————————–Hết—————————————————- NGUYỄN TUẤN QUẾ GV THPT Lương Đắc Bằng, Thanh Hóa www.laisac.page.tl SỞ GD VÀ ĐT THANH HÓA TRƯỜNG THPT BỈM SƠN ĐỀ THI THỬ ĐẠI HỌC ĐỢT I NĂM HỌC 2012-2013 Môn: Toán - Khối A (Thời gian làm bài: 180 phút) Phần I: Phần chung cho tất cả các thí sinh (7, 0... Hết………………… 7 SỞ GD VÀ ĐT THANH HÓA TRƯỜNG THPT BỈM SƠN ĐỀ THI THỬ ĐẠI HỌC ĐỢT I NĂM HỌC 2012-2013 Môn: Toán - Khối B (Thời gian làm bài: 180 phút) Phần I: Phần chung cho tất cả các thí sinh (7, 0 điểm) 2x Câu I (2 điểm) Cho hàm số y = (C ) x −1 1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 2 Tìm m để đường thẳng ( d ) : y = mx − m + 2 cắt (C) tại hai điểm phân biệt A, B sao cho độ dài AB nhỏ nhất Câu... ) = xy + 1 x4 + y4 2 xy + 1 Phần II: Phần riêng (3 điểm): thí sinh chỉ được chọn một trong hai phần A Theo chương trình chuẩn Câu VIa (2 điểm) 1 Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn ( C ) : x 2 + y 2 − 2 x − 4 y − 5 = 0 và điểm Tìm giá trị lớn nhất và nhỏ nhất của biểu thức P = A ( 0; −1) Tìm tọa độ các điểm B, C thuộc đường tròn (C) sao cho tam giác ABC đều x2 y 2 + =1 25 9 Viết phương... −7t 2 + 2t + 1 4 ( 2t + 1) 0.25 ( ) 7 −t 2 − t t = 0 −7t 2 + 2t + 1 ; f ' (t ) = 0 ⇔ Xét hàm số f ( t ) = có f ' ( t ) = 2 4 ( 2t + 1) 2 ( 2t + 1) t = −1(l ) 1 1 1 2 f − = f = ; f ( 0) = 4 5 3 15 1 2 Vậy GTLN bằng , GTNN bằng 4 15 0.25 1 = 2 ( xH − 1) 3 7 (C) có tâm I(1; 2), bán kính R = 10 ⇒ AI = 2 IH ⇒ ⇒H ; 2 2 3 = 2 ( yH − 2 ) (Do I là trọng tâm tam giác đều... ⇔ 2n + 1 = 2013 ⇔ n = 1006 ……………………………… Hết………………………………… www.mathvn.com 14 www.MATHVN.com SỞ GD VÀ ĐT THANH HÓA TRƯỜNG THPT BỈM SƠN ĐỀ THI THỬ ĐẠI HỌC ĐỢT I NĂM HỌC 2012-2013 Môn: Toán - Khối D (Thời gian làm bài: 180 phút) Phần I: Phần chung cho tất cả các thí sinh (7, 0 điểm) 2x Câu I: (2 điểm) Cho hàm số y = (C ) x −1 1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 2 Tìm m để đường thẳng ( d...Cảm ơn bạn Hoàng Thân ( hoangthan79@gmail.com) gửi tới www.laisac.page.tl PHẦN CHUNG Câu I (2 điểm) ma il.c om THỬ SỨC TRƯỚC KÌ THI Môn: Toán Thời gian làm bài: 180 phút TẠP CHÍ THTT ĐỀ THI THỬ SỐ 2 SỐ 425 (11-2012) x+m (m = −1)(C) x−1 1 Khảo sát và vẽ đồ thị hàm số (C) với m = 0 2 Giả sử M là điểm bất kì trên... xy + yz + zx = 3 Chứng minh rằng: 1 4 3 + ≥ xyz ( x + y )( y + z )( z + x ) 2 Phần II: Phần riêng (3 điểm): thí sinh chỉ được chọn một trong hai phần A Theo chương trình chuẩn Câu VIa.(2 điểm) 1 Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD tâm I(2; 1) và AC = 2BD 1 Điểm M 0; thuộc đường thẳng AB, điểm N(0; 7) thuộc đường thẳng CD Tìm tọa độ đỉnh B 3 biết B có hoành độ dương x2 y 2... giác đều ABC, H là trung điểm BC) Pt đường thẳng BC đi qua H và nhận AI = (1;3) làm vecto pháp tuyến là: x + 3 y − 12 = 0 VIa 1 7+ 3 7 3 y = y = x + y − 2x − 4 y − 5 = 0 2 2 ⇔ ∨ 3−3 3 3+ 3 3 x + 3 y − 12 = 0 x = x = 2 2 3−3 3 7 + 3 3+ 3 3 7 − 3 Vậy B hoặc ngược lại 2 ; 2 , C 2 ; 2 Gọi pt đường thẳng song song với Oy là (d): x = a (với a ≠ 0... điểm A trên d1 , B trên d2 sao cho đường thẳng AB đi qua điểm M(1;9;0) xu an thi Câu VIIa (1 điểm) Tìm phần thực và phần ảo của số phức z = 1 + i + i2 + 2i3 + 3i4 + + 2011i2012 Phần B theo chương nâng cao Câu VIb (2 điểm) 1 Trong hệ trục tọa độ Oxy cho điểm A(-1;2) và đường thẳng ∆ : 3x − 4y + 7 = 0 Viết phương trình đường tròn 4 (C) đi qua A và cắt ∆ theo đường kính BC sao cho tam giác ABC có diện... + 1 Phần II: Phần riêng (3 điểm): thí sinh chỉ được chọn một trong hai phần A Theo chương trình chuẩn Câu VIa.(2 điểm) 1 Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm A cố định nằm trên đường thẳng ∆ : 2 x − 3 y + 14 = 0 , cạnh BC song song với ∆ , đường cao CH có phương trình x − 2 y − 1 = 0 Biết trung điểm cạnh AB là điểm M(-3; 0) Xác định tọa độ các đỉnh A, B, C Tìm giá trị lớn nhất . 2 5 1 7 2 7 4 x x x x x x x x x đ đ - - + - = + ổ ử - + - - + + + + ỗ ữ ố ứ 0,25 ( ) ( ) 22 1 1 3 3 1 1 1 1 7 lim lim 12 2 12 2 5 7 2 7 4 x. – Nghệ An ĐỀ THI THỬ ĐẠI HỌC LẦN 1 - NĂM 2013 Môn thi: TOÁN; Khối: A Thời gian làm bài: 180 phút, không kể thời gian phá t đề. PHẦN CHUNG CHO