NGHIEN cUu & UNG DUNG B6I DUOPG nAno LUC PHAT HIEO VA GIAI OUVET VAn OE TRono HOC ToAn voi sir HO TRQ CUA cnii Le Van ''''Hiyen Sd Gido dtic vd Ddo tgo Tuyen Quang TS Tran Vift Cwdng Truang DHSP DH Thdi[.]
NGHIEN cUu & UNG DUNG B6I DUOPG nAno LUC PHAT HIEO VA GIAI OUVET VAn OE TRono HOC ToAn voi sir HO TRQ CUA cnii Nang l\|rc phdt hifn vk gidi quyit van de Nang luc phdt hifn va giai quy8t vdn de (trong hpc tgp) la mdt hf thong cac thupc tinh cua cd nhdn ngudi the hifn d cdc kha nang (tu va hanh dpng) ttong hoat dgng hgc tgp nhdm phdt hifn va giai quyit c6 hifu qua cac van de, nhifm vu ttong hogt dpng Bieu hien cua nang luc phat hifn va giai quyit ttong hpc tap todn dugc the hifn d cac mat sau: Biet huy dong dugc kien thitc Toan hgc lien quan tdi hoat dgng gidi quyet mgt ngi dung Toan hgc cu the; Co kl nang tien hanh dugc cac hoat dpng: giai bai todn, xay dung va nam vung khai niem Toan hgc va chiing minh djnh li ; Dat dugc ket qua phii hop vdi muc dich yeu cau; Biet van dung sang tao va co ket qua ttong cac tinh huong cua bai toan khac; The hifn dugc thai dg, tinh cam cua minh vdi nhiing ldi giai bai todn: Phat hifn sai lam va sira sai, thay dugc cai hay, sau sac ttong moi each giai Nang luc phat hien va giai quyet van de co the dugc chia theo cac miic sau: - O mice thd nhdt: HS dap ling dugc nhung yeu cau ca ban phat hifn va giai quyet van de van dfi da dugc GV dat mgt each tuong dii rd rang - O muc thu hai: HS nhan dugc van de GV dua ra; biit hodn tdt vifc phat hifn va giai quyet vdn di dudi su ggfi y, ddn ddt cua GV - Cfmuc dp diu ba: HS chu dgng phdt hifn dugc van de, dir doan NoAv nhAn hAi 7(1/01 non Nc^ Le Van 'Hiyen - Sd Gido dtic vd Ddo tgo Tuyen Quang TS Tran Vift Cwdng - Truang DHSP - DH Thdi Nguyen nhftng dieu kien ndy sinh van de va |MFi - MF2I = 2a nhan x6t cdch thuc tiep can de phat Cho diem A thay doi tten hifn vd giai quyit van de dudng tron (F,; CB) ta nhan dugc Bai bao nay, chiing toi gidi hinh anh tryc quan vi tgp hgp cac thifu khd nang boi duong nang diem M, day chinh la hlnh dang lire phdt hifn va gidi quyet van ciia Hyberbol (Hinh 1) de cho HS vdi su hd ttg cua cong nghf thong tin thong qua day hgc ngi dung cac dudng Conic chuang trinh Hinh hgc ldp 10 Trung hgc thong De mo ta cho dieu do, chiing toi minh hoa bang mgt so vi du sau: M0t so vi dy ve viec su dung cong nghf thdng tin gop Hinhi phan boi dir&ng nang luc phat Mat khac, neu sii dung each hien va giai quyet van de cho HS Vl dy Trong gio day bai minh hoa nhu sach giao khoa da phuang trinh dudng Hypebol, trinh bay thi chi mdi diing d miic GV CO the khai thac sir dung minh hoa hmh anh Hyberbol, phan mem Cabri Geometry ttong tai dp dai cua sgi day lai phai nho hon F1F2 thi HS chua day hgc nhu sau: • Hinh thdnh hinh dnh biet Khi su dung phan mem Cabri Geometry thi van de Hyberbol rat dan gian, ta su dung chugt - Lay hai diem F,, F^ co dinh cho diem C thay doi tren AB HS va mgt doan thang AB khdng doi quan sat hinh anh quy tich diem CO dai bang 2a nho hon F^F^ M di tu minh giai quyet van di Lay diem C bat ky thuoc doan thdng AB • Phucmg trinh chinh tdc cua - Ldn lugt dung dudng tron Hyberbol tam Fj CO ban kinh bing dg dai Ve phucmg trinh chinh tac ciia cua doan thang AC va dudng Hyberbol, sach giao khoa sau tron tam F, c6 ban kinh bang dg dua viec chgn true toa Oxy dai cua doan thang CB cho F, = (-c; 0) va Fj = (c; 0) - Lay mgt diem A bat ky tren da dua ket luan M(x; y) e (H) dudng trdn (F,; CB)