Tài liệu tham khảo |
Loại |
Chi tiết |
[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” 2018.[Online]. Available: https://arxiv.org/abs/1810.04805 |
Sách, tạp chí |
Tiêu đề: |
Bert: Pre-trainingof deep bidirectional transformers for language understanding |
|
[2] C. Sun, L. Huang, and X. Qiu, “Utilizing bert for aspect-based sentiment analysis via constructing auxiliary sentence,” 2019.[Online]. Available: https://arxiv.org/abs/1903.09588 |
Sách, tạp chí |
Tiêu đề: |
Utilizing bert for aspect-basedsentiment analysis via constructing auxiliary sentence |
|
[3] J. Wagner, P. Arora, S. Cortes, U. Barman, D. Bogdanova, J. Foster, and L. Tounsi, “DCU: Aspect-based polarity classification for SemEval task 4,” in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014). Dublin, Ireland: Association for Computational Linguistics, Aug. 2014, pp. 223–229. [Online].Available: https://aclanthology.org/S14-2036 |
Sách, tạp chí |
Tiêu đề: |
DCU: Aspect-based polarity classification forSemEval task 4,” in"Proceedings of the 8th International Workshop onSemantic Evaluation (SemEval 2014) |
|
[4] T. Wilson, J. Wiebe, and P. Hoffmann, “Recognizing contextual polar- ity in phrase-level sentiment analysis,” in Proceedings of human lan- guage technology conference and conference on empirical methods in natural language processing, 2005, pp. 347–354 |
Sách, tạp chí |
Tiêu đề: |
Recognizing contextual polar-ity in phrase-level sentiment analysis,” in "Proceedings of human lan-guage technology conference and conference on empirical methods innatural language processing |
|
[5] S. Baccianella, A. Esuli, and F. Sebastiani, “Sentiwordnet 3.0: An en- hanced lexical resource for sentiment analysis and opinion mining,”in Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), 2010 |
Sách, tạp chí |
Tiêu đề: |
Sentiwordnet 3.0: An en-hanced lexical resource for sentiment analysis and opinion mining,”in "Proceedings of the Seventh International Conference on LanguageResources and Evaluation (LREC’10) |
|
[6] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 2004, pp. 168–177 |
Sách, tạp chí |
Tiêu đề: |
Mining and summarizing customer reviews,” in"Proceedings of the tenth ACM SIGKDD international conference onKnowledge discovery and data mining |
|
[7] T. H. Nguyen and K. Shirai, “PhraseRNN: Phrase recursive neural network for aspect-based sentiment analysis,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association for Computational Linguistics, Sep. 2015, pp. 2509–2514. [Online]. Available: https://aclanthology.org/D15-1298 |
Sách, tạp chí |
Tiêu đề: |
PhraseRNN: Phrase recursiveneural network for aspect-based sentiment analysis,” in "Proceedingsof the 2015 Conference on Empirical Methods in Natural LanguageProcessing |
|
[8] Y. Ma, H. Peng, and E. Cambria, “Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive lstm,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018 |
Sách, tạp chí |
Tiêu đề: |
Targeted aspect-based sentimentanalysis via embedding commonsense knowledge into an attentivelstm,” in"Proceedings of the AAAI conference on artificial intelligence |
|
[9] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti- mation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013 |
Sách, tạp chí |
Tiêu đề: |
Efficient esti-mation of word representations in vector space,” "arXiv preprintarXiv:1301.3781 |
|
[10] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1532–1543 |
Sách, tạp chí |
Tiêu đề: |
Glove: Global vectorsfor word representation,” in "Proceedings of the 2014 conference onempirical methods in natural language processing (EMNLP) |
|
[11] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov, “Fasttext.zip: Compressing text classification models,” |
Sách, tạp chí |
Tiêu đề: |
Fasttext.zip: Compressing text classification models |
|
[12] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep contextualized word representations,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana |
Sách, tạp chí |
Tiêu đề: |
Deep contextualized word representations,” in"Proceedings of the 2018 Conference of the North American Chapterof the Association for Computational Linguistics: Human LanguageTechnologies, Volume 1 (Long Papers) |
|
[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” |
Sách, tạp chí |
Tiêu đề: |
Attention is all you need |
|
[15] L. L. Phan, P. H. Pham, K. T. Nguyen, T. T. Nguyen, S. K. Huynh, L. T. Nguyen, T. V. Huynh, and K. V. Nguyen, “SA2SL: from aspect-based sentiment analysis to social listening system for business intelligence,” CoRR, vol. abs/2105.15079, 2021. [Online]. Available:https://arxiv.org/abs/2105.15079 |
Sách, tạp chí |
Tiêu đề: |
SA2SL: fromaspect-based sentiment analysis to social listening system for businessintelligence,” "CoRR |
|
[16] D. Q. Nguyen and A. Tuan Nguyen, “PhoBERT: Pre-trained language models for Vietnamese,” in Findings of the Association for Computational Linguistics: EMNLP 2020. Online: Association for Computational Linguistics, Nov. 2020, pp. 1037–1042. [Online].Available: https://aclanthology.org/2020.findings-emnlp.92 |
Sách, tạp chí |
Tiêu đề: |
PhoBERT: Pre-trainedlanguage models for Vietnamese,” in "Findings of the Association forComputational Linguistics: EMNLP 2020 |
|