CHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNGCHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNG
CHỦ ĐỀ 9: BÀI TOÁN LÃI SUẤT, TĂNG TRƯỞNG II CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI BÀI TỐN CƠNG THỨC LÃI KÉP Cơng thức:= T A (1 + r ) n A số tiền gốc ban đầu, r lãi suất/kỳ hạn n số kỳ hạn T tổng số tiền gốc lẫn lãi thu Như số tiền lãi thu là: L = T − A = A (1 + r ) − A n Ví dụ 1: [Đề thi THPT Quốc gia 2017] Một người gửi 50 triệu đồng vào ngân hàng với lãi suất 6%/năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào gốc để tính lãi cho năm Hỏi sau năm người nhận số tiền nhiều 100 triệu đồng bao gồm gốc lãi? Giả định suốt thời gian, lãi suất khơng đổi người khơng rút tiền A 13 năm B 12 năm C 14 năm D 11 năm Lời giải Gọi n ∈ + số năm cần để có 100 triệu đồng Suy 50 (1 + 6% ) > 100 ⇔ n > 11,9 ⇒ n = 12 năm Chọn B n Ví dụ 2: [Đề thi THPT Quốc gia 2018] Một người gửi tiết kiệm vào ngân hàng với lãi suất 7,5%/năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền ra? A 11 năm B năm C 10 năm D 12 năm Lời giải Áp dụng công thức lãi kép ta có:= r 7,5%, T ≥ A T A (1 + r ) = n Suy A (1 + 7,5% ) ≥ A ⇒ 1, 075n ≥ ⇔ n ≥ log1,075 ≈ 9,58 n Vậy cần 10 năm để số tiền người thu gấp đơi số tiền ban đầu Chọn C Ví dụ 3: [Đề thi THPT Quốc gia 2017] Đầu năm 2016, ông A thành lập công ty Tổng số tiền ông A dùng để trả lương cho nhân viên năm 2016 tỷ đồng Biết sau năm tổng số tiền dùng để trả lương cho nhân viên năm tăng thêm 15% so với năm trước Hỏi năm năm mà tổng số tiền ông A dùng để trả lương cho nhân viên năm lớn tỷ đồng? A Năm 2022 B Năm 2021 C Năm 2020 Lời giải D Năm 2023 Tổng số tiền ông A trả lương cho nhân viên sau n năm là: T =T0 (1 + r ) =1(1 + 15% ) n n Giải (1 + 15% ) ≥ ⇒ n ≥ 4,95 ⇒ n = Chọn B n Ví dụ 4: [Đề thi GD&ĐT Hà Nội năm 2017] Ông Việt dự định gửi vào ngân hàng số tiền với lãi suất 6,5% năm Biết rằng, sau năm số tiền lãi nhập vào vốn ban đầu Tính số tiền tối thiểu x (triệu đồng, x ∈ ) ông Việt gửi vào ngân hàng để sau năm số tiền lãi đủ mua xe gắn máy trị giá 30 triệu đồng A 150 triệu đồng B 154 triệu đồng C 145 triệu đồng D 140 triệu đồng Lời giải Công thức lãi kép= T A (1 + r ) n Tiền lãi ông Việt có sau năm tiền gốc lẫn lãi trừ số tiền gốc ban đầu Ta có: A (1 + 6,5% ) − A ≥ 30 ⇔ A ≥ 30 (1 + 6,5% ) −1 ≈ 144, 26 triệu Chọn C Ví dụ 5: Sau thời gian làm việc, chị An có số vốn 450 triệu đồng Chị An chia số tiền thành hai phần gửi hai ngân hàng Agribank Sacombank theo phương thức lãi kép Số tiền phần thứ chị An gửi ngân hàng Agribank với lãi suất 2,1% quý thời gian 18 tháng Số tiền phần thứ hai chị An gửi ngân hàng Sacombank với lãi suất 0,73% tháng thời gian 10 tháng Tổng số tiền lãi thu hai ngân hàng 50,01059203 triệu đồng Hỏi số tiền chị An gửi ngân hàng Agribank Sacombank bao nhiêu? A 280 triệu 170 triệu B 170 triệu 280 triệu C 200 triệu 250 triệu D 250 triệu 200 triệu Lời giải Gọi x, y (triệu đồng) số tiền mà chị An gửi vào ngân hàng Agribank Sacombank Số tiền lãi mà chị An nhận gửi tiền vào ngân hàng Agribank t1 = x (1 + 2,1% ) − x triệu Số tiền lãi mà chị An nhận gửi tiền vào ngân hàng Sacombank t2 =+ y (1 0, 73% ) − y triệu 10 450 x + y = x = 280 Khi đó, ta có hệ phương trình Chọn A ⇒ 10 y = 170 x + 2,1% + y + 0, 73% = 500, 010592 ( ) ( ) Ví dụ 6: [Trích đề tham khảo GD&ĐT năm 2018] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0,4%/tháng Biết khơng rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn ban đầu lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi suất không thay đổi? A 102.424.000 đồng B 102.423.000 đồng C 102.016.000 đồng D 102.017.000 đồng Lời giải Số tiền người nhận sau tháng 100.000.000 (1 + 0, 4% ) = 102.424.000 Chọn A BÀI TỐN CƠNG THỨC TĂNG TRƯỞNG DÂN SỐ Công thức:= N N (1 + r ) N dân số năm ban đầu, r tỷ lệ tăng dân số/năm, n số năm n N dân số năm cần tìm Ví dụ 1: Theo báo cáo phủ dân số nước ta tính đến tháng 12 năm 2018 95,93 triệu người, tỷ lệ tăng trưởng dân số trung bình năm 1,33% dân số nước ta vào tháng 12 năm 2025 bao nhiêu? Lời giải Dân số nước ta vào tháng 12 năm 2025 là: N =95,93 (1 + 1,33% ) ≈ 105, 23 triệu người Ví dụ 2: Dân số xã 10.000 người, người ta dự đoán sau năm dân số xã 10404 người Hỏi trung bình năm, dân số xã tăng phần trăm Lời giải Theo cơng thức ta có: N = N (1 + r ) ⇒ 10404 = 10000 (1 + r ) ⇒= r 0, 02% /năm n BÀI TOÁN HAO MỊN TÀI SẢN, DIỆN TÍCH RỪNG BỊ GIẢM… ̶ Cơng thức hao mịn tài sản:= H H (1 − r ) H giá trị tài sản lúc ban đầu, H giá trị tài n sản sau n năm r tỷ lệ hao mịn tính theo năm ̶ Cơng thức diện tích rừng bị giảm:= T T0 (1 − r ) T0 diện tích rừng ban đầu, T diện tích n rừng sau n năm r tỷ lệ rừng giảm năm Ví dụ 1: Giả sử sau năm diện tích rừng nước ta giảm x phần trăm diện tích có Hỏi sau năm diện tích rừng nước ta phần diện tích nay? x A − 100 B 100% C − 4x 100 x D 1 − 100 Lời giải Sau năm thứ n , diện tích rừng cịn lại T0 (1 − r ) n x nên sau năm diện tích rừng 1 − phần 100 diện tích nước ta Chọn D Ví dụ 2: Một người mua xe SH trị giá 98 triệu đồng, tính giá trị xe sau năm, biết sau năm giá trị xe giảm 10% Lời giải Giá trị xe sau năm là: T = 98 (1 − 10% ) = 57,87 triệu đồng Ví dụ 3: Khi kim loại làm nóng đến 600°C bền kéo giảm 50% Sau kim loại vượt qua ngưỡng 600°C nhiệt độ kim loại tăng thêm 5°C độ bền kéo giảm 35% có Biết kim loại có độ bền kéo 280 MPa 600°C sử dụng việc xây dựng lị cơng nghiệp Nếu mức an toàn tối thiểu độ bền kéo vật liệu 38 MPa nhiệt độ an tồn tối đa lị cơng nghiệp bao nhiêu, tính theo độ Celsius? A 620 B 615 C 605 D 610 Lời giải Độ bền kéo 280 MPa 600°C Đến 600°C bền kéo giảm 50% 140 MPa Nhiệt độ kim loại tăng 5°C độ bền kéo giảm 35% nên ta có n 35 140 1 − ≥ 38 ⇔ n ≤ 3, 027 100 Suy n = Mỗi chu kỳ tăng 5°C ⇒ chu kỳ tăng 15°C Nhiệt độ an toàn tối đa 615°C Chọn B BÀI TOÁN TĂNG TRƯỞNG CỦA BÈO, CỦA VI KHUẨN… ̶ Tăng trưởng bèo: Giả sử lượng bèo ban đầu T0 lượng bèo tăng gấp lần sau n lượng bèo T = T0 2n (nếu tăng k lần công thức T = T0 k n ) ̶ Tăng trưởng vi khuẩn: Công thức: s ( t ) = A.e rt A số lượng vi khuẩn ban đầu, s ( t ) số lượng vi khuẩn sau thời gian t , r tỷ lệ tăng trưởng ( r > ) , t thời gian tăng trưởng Ví dụ 1: Một người thả bèo vào ao, sau 12 bào sinh sơi phủ kín mặt ao Hỏi sau bèo phủ kín mặt ao, biết sau lượng bèo tăng gấp 10 lần lượng bèo trước tốc độ tăng không đổi A 12 − log B 12 C 12 − log D 12 + ln Lời giải Ta có: T = T0 10t , T (12 ) = T0 1012 Gọi t0 thời gian bèo phủ ⇔ 10t0 = 1 mặt hồ = T0 10t0 = T (12 ) T0 1012 5 12 1 10 ⇔ log10t0 = log 1012 ⇔ t0 = 12 − log Chọn A 5 Ví dụ 2: Người ta thả bèo vào hồ nước Sau thời gian t giờ, bèo sinh sơi kín mặt hồ Biết sau giờ, lượng bèo tăng gấp 10 lần lượng bèo trước tốc độ tăng khơng đổi Hỏi sau số bèo phủ kín A t mặt hồ? B 10t C t − log D t log Lời giải Ta có: T = T0 10t 1 t0 mặt hồ, suy T0 10= = T T0 10t 3 Gọi t0 khoảng thời gian cần để bèo phủ kín 10t Suy 10 = ⇒ t0 =t − log Chọn C t0 Ví dụ 3: Trong nông nghiệp bèo hoa dâu dùng làm phân bón, tốt cho trồng Mới nhóm nhà khoa học Việt Nam phát bèo hoa dâu dùng để chiết xuất chất có tác dụng kích thích hệ miễn dịch hỗ trợ điều trị bệnh ung thư Bèo hoa dâu thả nuôi mặt nước Một người thả lượng bèo hoa dâu chiếm 4% diện tích mặt hồ Biết sau tuần bèo phát triển thành lần lượng có tốc độ phát triển bèo thời điểm Sau ngày bèo vừa phủ kín mặt hồ? A × log 25 25 B C × 24 D × log 24 Lời giải Gọi A lượng bèo ban đầu, để phủ kín mặt hồ lượng bèo 100 A Sau tuần số lượng bèo 3A suy sau n tuần lượng bèo là: 3n A n Để lượng bèo phủ kín mặt hồ 3= A 100 100 A ⇒= n log = log 25 ⇒ thời gian để bèo phủ kín mặt 4 hồ là: t = log 25 Chọn A Ví dụ 4: Số lượng lồi vi khuẩn phịng thí nghiệm tính theo cơng thức s ( t ) = A.e rt A số lượng vi khuẩn ban đầu, s ( t ) số lượng vi khuẩn có sau t (phút), r tỷ lệ tăng trưởng ( r > 0) , t (tính theo phút) thờ gian tăng trưởng Biết số lượng vi khuẩn ban đầu có 500 sau có 1500 Hỏi sau bao lâu, kể từ lúc bắt đầu, số lượng vi khuẩn đạt 121500 con? A 35 B 45 C 25 D 15 Lời giải 5r Theo ta có: 1500 = 500.e5 r ⇒ e= Khi số lượng vi khuẩn đạt 121500 thì: ( ) t t 121500= 500.e rt ⇔ e rt= 243 ⇔ e5 r 5= 234 ⇔ 35= 243 ⇔ = t 5log 243= 25 Chọn C Ví dụ 5: Số lượng lồi vi khuẩn phịng thí nghiệm tính theo cơng thức s ( t ) = A.e rt A số lượng vi khuẩn ban đầu, s ( t ) số lượng vi khuẩn có sau t (phút), r tỷ lệ tăng trưởng ( r > 0) , t (tính theo phút) thời gian tăng trưởng Biết số lượng vi khuẩn ban đầu có 100 sau có 300 Hỏi sau bao lâu, kể từ lúc bắt đầu, số lượng vi khuẩn tăng gấp 10 lần so với số lượng ban đầu? A t = log B t = 3ln log10 C t = log D t = 5ln ln10 Lời giải 5r Theo ta có: 300 = 100.e5 r ⇒ e= Khi số lượng vi khuẩn tăng gấp 10 lần khi: ( ) 10 = e rt ⇔ e rt = 10 ⇔ e5 r t t = 10 ⇔ 35 = 10 ⇔ t = 5log 10 = Chọn C log Ví dụ 6: Sự tăng trưởng lồi vi khuẩn tính theo công thức f ( x ) = A.e rx , A số lượng vi khuẩn ban đầu, r tỷ lệ tăng trưởng ( r > ) , x (tính theo giờ) thời gian tăng trưởng Biết số vi khuẩn ban đầu có 1000 sau 10 5000 Hỏi sau số lượng vi khuẩn tăng gấp 10 lần A 5.ln 20 (giờ) B 5.ln10 (giờ) C 10.log 10 (giờ) D 10.log 20 (giờ) Lời giải r Theo đề ta có = 5000 1000.e10= ⇒r ln 10 Gọi x0 thời gian để số vi khuẩn tăng gấp 10, suy 10 = A A.e ln x0 10 ⇒= x0 10.log 10 (giờ) Chọn C Ví dụ 7: [Đề thử nghiệm Bộ GD&ĐT 2017] Số lượng loại vi khuẩn A phịng thí nghiệm tính theo cơng thức s ( t ) = s ( ) 2t , s ( ) số lượng vi khuẩn A lúc ban đầu, s ( t ) số lượng vi khuẩn A có sau t phút Biết sau phút số lượng vi khuẩn A 625 Hỏi sau bao lâu, kể từ lúc ban đầu, số lượng vi khuẩn A 10 triệu con? A 48 phút B 19 phút C phút D 12 phút Lời giải Ta có: s ( 3) = s ( ) 23 ⇒ s ( ) = s ( 3) = 78,125 nghìn Do s ( t ) = 10 triệu =10000 nghìn 10000 = s ( ) 2t ⇒= 2t 10000 = 128 78,125 phút Chọn C = ⇒ t log= 128 Ví dụ 8: Trong môi trường nuôi cấy ổn định người ta nhận thấy sau ngày số lượng loài vi khuẩn A tăng lên gấp đơi, cịn sau 10 ngày số lượng loài vi khuẩn B tăng lên gấp ba Giả sử ban đầu có 100 vi khuẩn A 200 vi khuẩn B, hỏi sau ngày nuôi cấy mơi trường số lượng hai lồi nhau, biết tốc độ tăng trưởng loài thời điểm nhau? A × log ngày B × log ngày 3 C 10 × log ngày D 10 × log ngày Lời giải Giả sử sau x ngày số lượng hai lồi vi khuẩn Khi đó, ta có x x x x x −1 x 100.2 5= 200.310 ⇔ 5= 2.310 ⇔ = 310 ⇔ x x 10 −1= log ⇔ x ( − log 3) = 10 ⇔ x = 10 − log Lại có − log = log 10 = ⇒x= = 10 × log ngày Chọn D log 2 − log 3 Ví dụ 9: Số lượng loại virut H phịng thí nghiệm tính theo cơng thức s ( t ) = s ( ) 3t s ( ) số lượng virut H lúc ban đầu, s ( t ) số lượng virut H có sau thời gian t phút Biết sau phút số lượng virut H 815.000 Hỏi sau bao lâu, kể từ lúc ban đầu, số lượng virut H 22.005.000 con? A phút B 30 phút C 27 phút D 15 phút Lời giải Sau phút số lượng virut H 815.000 con, suy 815.000= s ( ) 35 ⇒ s ( 0= ) Gọi t0 phút thời gian để có 22.005.000 virut, suy 22.005.000 = 815.000 35 815.000 t0 = ⇒ t0 phút Chọn 35 A BÀI TOÁN TIỀN GỬI TIẾT KIỆM Giả sử người tháng gửi số tiền m (tiền) n tháng Số tiền gốc lẫn lãi sinh từ số tiền gửi của: Tháng thứ là: m (1 + r ) Tháng thứ hai là: m (1 + r ) n n −1 …………………………… Tháng thứ n − là: m (1 + r ) Suy sau n tháng, số tiền gốc lẫn lãi thu là: T = m (1 + r ) + m (1 + r ) n n −1 + + m (1 + r ) u1 m (1 + r ) (1 + r ) − 1 − qn = Áp dụng tổng cấp số nhân với = , T u1 = m (1 + r ) 1− q r q = + r n Chú ý Nếu tháng thứ gửi số tiền M , tháng thứ hai gửi số tiền M …… tháng thứ n − gửi số tiền M n −1 cơng thức là: T = M (1 + r ) + M (1 + r ) n n −1 + + M n −1 (1 + r ) Ví dụ 1: Bạn Tuấn muốn có triệu đồng sau 15 tháng tháng phải gửi vào ngân hàng tiền, biết lãi suất ngân hàng 0,6% tháng (làm tròn đến hàng đơn vị) A 63530 đồng B 65530 đồng C 58530 đồng D 65540 đồng Lời giải Theo cách thiết lập công thức ta được:= T m (1 + r ) ⇒m T r = n (1 + r ) (1 + r ) − 1 (1 + r ) n −1 r 1000000.0, 6% ≈ 63530 đồng Chọn A 15 (1 + 0, 6% ) (1 + 0, 6% ) − 1 Ví dụ 2: Một người hàng tháng gửi vào ngân hàng số tiền triệu đồng Biết lãi suất tiết kiệm ngân hàng khơng đổi suốt q trình gửi 0,35% Hỏi sau năm người có tiền A 1,043 triệu đồng B 12,28 triệu đồng C 12,51 triệu đồng D 14,01 triệu đồng Lời giải (1 + r ) Theo cách thiết lập công thức ta được: T = m (1 + r ) n −1 (1 + 0,35% ) = (1 + 0,35% ) 12 −1 0,35% r ⇒ T ≈ 12, 28 triệu đồng Chọn C Ví dụ 3: Một người muốn sau năm phải có số tiền 20 triệu đồng để mua xe máy Hỏi người phải gửi vào ngân hàng khoản tiền hàng tháng Biết lãi suất tiết kiệm 0,27%/tháng (chọn kết gần nhất) A 1,64 triệu đồng B 1,78 triệu đồng C 1,14 triệu đồng D 1,45 triệu đồng Lời giải Theo cách thiết lập công thức ta được:= T m (1 + r ) ⇒m T r = n (1 + r ) (1 + r ) − 1 (1 + r ) n −1 r 20.0, 27% ≈ 1, 637 triệu đồng Chọn A 12 (1 + 0, 27% ) (1 + 0, 27% ) − 1 BÀI TỐN TRẢ GĨP HÀNG THÁNG Giả sử người vay số tiền T , sau tháng kể từ ngày vay, tháng người trả số tiền m sau n tháng Số tiền gốc lẫn lãi sinh từ số tiền T sau n tháng là: T (1 + r ) n Số tiền gốc lẫn lãi sinh từ số tiền m tháng thứ là: m (1 + r ) Số tiền gốc lẫn lãi sinh từ số tiền m tháng thứ hai là: m (1 + r ) n −1 n−2 Số tiền gốc lẫn lãi sinh từ số tiền m tháng thứ n là: m Như số tiền trả là: m (1 + r ) + m (1 + r ) n −1 Suy số tiền lại cần phải trả là: T (1 + r ) Để trả hết nợ T (1 + r ) n (1 + r ) − m n r −1 n n−2 (1 + r ) + + m = m n −1 r (1 + r ) − m n −1 r T r (1 + r ) =0 ⇔ m = n (1 + r ) − n Ví dụ 1: Một người vay ngân hàng 100 triệu đồng với lãi suất 0,7%/tháng theo thỏa thuận tháng người trả cho ngân hàng triệu đồng trả hàng tháng hết nợ (tháng cuối trả triệu) Hỏi sau tháng người trả hết nợ ngân hàng A 22 B 23 C 24 D 21 Lời giải Ta có a = A.r (1 + r ) (1 + r ) n n −1 với a số tiền trả hàng tháng, A số tiền vay ngân hàng, r lãi suất 100.0, 7% (1 + 0, 7% ) Do ta có = = ⇒ n 21, 62 nên sau 22 tháng trả hết nợ Chọn A n (1 + 0, 7% ) − n Ví dụ 2: Anh Bình mua điện thoại giá triệu đồng theo hình thức trả trước 30% phần cịn lại trả góp hàng tháng với lãi suất 0,9%/tháng Biết anh Bình muốn trả nợ cửa hàng theo cách: Sau tháng kể từ ngày mua, anh Bình bắt đầu trả nợ, hai lần trả nợ liên tiếp cách tháng, số tiền trả nợ lần Hỏi, sau 12 tháng anh Bình muốn trả hết nợ hàng tháng anh Bình phải trả cho cửa hàng tiền (làm tròn đến ngàn đồng)? Biết lãi suất khơng thay đổi thời gian anh Bình trả nợ A 556000 đồng B 795000 đồng C 604000 đồng Lời giải Số tiền ban đầu anh Bình nợ hàng 9, 70% = 6,3 triệu đồng D 880000 đồng Nợ anh Bình với hàng sau n tháng tính theo CT N n = T (1 + r ) n (1 + r ) −a n −1 r , T số tiền ban đầu cịn nợ, a số tiền trả góp hàng tháng, r lãi suất hàng tháng n số tháng Theo đề ta có 6,3.10 (1 + 0, 009 ) 12 (1 + 0, 009 ) −a 12 −1 0, 009 = ⇒ a ≈ 556000 đồng Chọn A Ví dụ 3: Bạn An mua máy tính giá 10 triệu đồng hình thức trả góp với lãi suất 0,7%/tháng Để mang máy dùng, ban đầu An trả triệu đồng Kể từ tháng sau mua An trả tháng 500 ngàn đồng Hỏi tháng cuối An phải trả tiền hết nợ (làm trịn đến đơn vị ngàn đồng) A 401 ngàn đồng B 375 ngàn đồng C 391 ngàn đồng D 472 ngàn đồng Lời giải Áp dụng công thức m = phải trả Suy 0,5 = T r (1 + r ) n (1 + r ) − n , với m số tiền trả tháng, r lãi suất T tổng số tiền 7.0, 007 (1 + 0, 007 ) (1 + 0, 007 ) n −1 n ⇒ n ≈ 14, 796 tháng Suy số tiền phải trả tháng cuối ( n − 1) 500000 ≈ 391 ngàn đồng Chọn C Ví dụ 4: Một học sinh muốn mua Iphone Plus có giá 20 triệu đồng Vì khơng có tiền nên em giấu bố mẹ mua trả góp kì hạn theo tháng với lãi suất 5% tháng Nếu em muốn sau 18 tháng trả hết nợ tháng em cần trả số tiền m (kết quy trịn hàng nghìn đồng) Biết thời gian đó, lương mẹ em tháng 2,5 triệu, so sánh m với lương mẹ bạn ta có A Ít 958.000 đồng B Nhiều 912.000 đồng C Ít 789.000 đồng D Nhiều 128.000 đồng Lời giải Đặt T = 20 triệu đồng T (1 + r ) r T (1 + 0, 05 ) 0, 05 Ta có: m = = ⇒ ≈ 1, 71 triệu đồng m 18 1.0518 − (1 + r ) − 18 18 Do số tiền trả góp 2,5 − 1, 71 ≈ 0, 789 triệu đồng Chọn C BÀI TOÁN MỘT SỐ DẠNG TỐN KHÁC Ví dụ 1: Theo dự báo với mức tiêu thụ dầu không đổi trữ lượng dầu nước A hết sau 100 năm Nhưng quản lí kém, bị số kẻ gian lấy trộm để bán lậu nên kể từ năm thứ trở mức tiêu thụ tăng lên 4% năm so với năm liền trước Hỏi sau năm số dầu dự trữ nước A hết? A 39 B 45 C 41 Lời giải D 42 Gọi số dầu tiêu thụ năm theo dự tính x Suy tổng dự trữ dầu 100x Gọi t số năm thực tế tiêu thụ hết dầu, suy x + x (1, 04 ) + x (1, 04 ) + + x (1, 04 ) = 100 x ⇔x − (1, 04 ) t +1 − 1, 04 = 100 x ⇔ − (1, 04 ) t t +1 − 1, 04 = 100 ⇒ t ≈ 42 năm Chọn D Ví dụ 2: [Đề thi chuyên ĐH Vinh năm 2017] Các khí thải gây hiệu ứng nhà kính nguyên nhân chủ yếu làm Trái Đất nóng lên Theo OECD (Tổ chức Hợp tác Phát triển kinh tế giới), nhiệt độ Trái Đất tăng lên tổng giá trị kinh tế tồn cầu giảm Người ta ước tính rằng, nhiệt độ Trái đất tăng thêm 2°C tổng giá trị kinh tế tồn cầu giảm 3%; cịn nhiệt độ Trái đất tăng thêm 5°C tổng giá trị kinh tế toàn cầu giảm 10% Biết rằng, nhiệt độ Trái đất tăng thêm t °C , tổng giá trị kinh tế toàn cầu giảm f ( t ) % f ( t ) = k a t , k , a số dương Khi nhiệt độ Trái đất tăng thêm °C tổng giá trị kinh tế tồn cầu giảm đến 20%? A 8, 4°C B 9,3°C C 7, 6°C D 6, 7°C Lời giải k a = 3% Theo ta có k a = 10% (1) Ta cần tìm t 10 3% Từ (1) ⇒ k = a = ⇒a= a ⇒ cho k a t = 20% 10 3% t 20 20 20 a = 20% ⇒ a t − = ⇒ t − = log a ⇒ t = + log 10 ≈ 6, Chọn D 3 3 a Ví dụ 3: Khi ánh sáng qua mơi trường (chẳng hạn khơng khí, nước, sương mù,…) cường độ giảm dần theo quãng đường truyền x , theo công thức I ( x ) = I e − µ x I cường độ ánh sáng bắt đầu truyền vào mơi trường µ hệ số hấp thu mơi trường Biết nước biển có hệ số hấp thu µ = 1, người ta tính từ độ sau 2m xuống đến độ sâu 20m cường độ ánh sáng giảm .1010 lần Số nguyên sau gần với A B C 10 Lời giải Ta có: x = 20 − = 18 m Theo cơng thức ta có: .1010 = I ( x) I0 = e µ x = e1,4.18 ⇒ = e1,4.18 ≈ 8,8 Chọn B 1010 D 90 −3t Ví dụ 4: Một điện thoại nạp pin, dung lượng nạp tính theo cơng thức Q= ( t ) Q0 1 − e , với t khoảng thời gian tính Q0 dung lượng nạp tối đa (pin đầy) Nếu điện thoại nạp pin từ lúc cạn pin (tức dung lượng pin lúc bắt đầu nạp 0%) sau nạp 90% (kết làm tròn đến hàng phần trăm)? A t ≈ 1,54h B t ≈ 1, 2h C t ≈ 1h D t ≈ 1,34h Lời giải Ta có: Q (t ) Q0 1− e = −3t ⇔ −3t −3t 90 −2 1 − e ⇔ e = ⇔ t = ln ≈ 1,54h Chọn A = 100 10 10 Ví dụ 5: Ơng An bắt đầu làm với mức lương khởi điểm triệu đồng tháng Cứ sau ba năm ơng An tăng lương 40% Hỏi sau tròn 20 năm làm, tổng tiền lương ông An nhận (làm tròn đến hai chữ số thập phân sau dấu phẩy)? A 726,74 triệu đồng B 716,74 triệu đồng C 858,72 triệu đồng D 768,37 triệu đồng Lời giải Số tiền ông An kiếm năm đầu là: 3.12 = 36 triệu đồng Số tiền ông An có sau 18 năm làm S1 = 36 + 36 (1 + 40% ) + + 36 (1 + 40% ) + 36 (1 + 4% ) Số tiền ông An nhận sau năm cuối (năm thứ 19 20)= S 2.12 (1 + 4% ) Do tổng số tiền ông An thu là: S= 36 − (1, ) − 1, 6 + 24 (1, ) ≈ 768,37 triệu đồng Chọn D Ví dụ 6: Một nguồn âm đẳng hướng đặt điểm O có cơng suất truyền âm khơng đổi Mức cường độ âm điểm M cách O khoảng R tính cơng thức LM = log k (Ben) với k số Biết R2 điểm O thuộc đoạn thẳng AB mức cường độ âm A B LA = 3Ben LB = Ben Tính mức cường độ âm trung điểm AB (làm tròn đến hai chữ số sau dấu phẩy) A 3,59 Ben B 3,06 Ben C 3,69 Ben Lời giải k log L = = = OA A OA2 Ta có ⇒ k L log OB = = = A OB 10k 100 ⇒ AB= 10k 1000 Gọi N trung điểm AB ⇒ ON = AB 11 10k 10k 10k − OB = − = 2000 1000 2000 10k 10k 11 10k + = 100 1000 1000 D Ben k 20002 k Suy mức cường độ âm N = = ≈ 3, 69 Ben Chọn C LN log log ON 81.10k Ví dụ 7: Một bể nước có dung tích 1000 lít Người ta mở vịi cho nước chảy vào bể, ban đầu bể cạn nước Trong đầu vận tốc nước chảy vào bể lít/1 phút Trong vận tốc nước chảy sau gấp đôi liền trước Hỏi sau khoảng thời gian bể đầy nước (kết gần nhất) A 3,14 B 4,64 C 4,14 D 3,64 Lời giải Gọi x + khoảng thời gian cần để nước chảy đầy bể, ta có x 60.20 + 60.21 + 60.22 + + 60.2= 1000 ⇔ 60 − x +1 53 +1 = 1000 ⇔ x= ⇔ x + ≈ 4,14 Chọn C 1− Ví dụ 8: Cho biết chu kì bán rã chất phóng xạ radi Ra 226 1602 năm (tức lượng Ra 226 sau 1602 năm phân hủy cịn lại nửa) Sự phân hủy tính theo cơng thức S = A.e rt A lượng chất phóng xạ ban đầu, r tỉ lệ phân hủy hàng năm ( r < ) , t thờ gian phân hủy, S lượng lại sau thời gian phân hủy Hỏi 5gamRa 226 sau 4000 năm phân hủy lại gam (làm tròn đến chữ số thập phân)? A 0,886 (gam) B 1,023 (gam) C 0,795 (gam) D 0,923 (gam) Lời giải Đầu tiên ta tính r : ln A =A.e1602 r ⇔ r =− 1602 Thay A = (gam), t = 4000, r = − ln vào công thức S = A.e rt , tìm S ≈ 0,886 (gam) Chọn A 1602 Ví dụ 9: Với mức tiêu thụ thức ăn trang trại X không đổi dự định lượng thức ăn dự trữ đủ cho 100 ngày Nhưng thực tế, kể từ ngày thứ hai trở lượng tiêu thụ thức ăn trang trại tăng thêm 4% so với ngày trước Hỏi lượng thức ăn dự trữ trang trại X thực tế đủ cho ngày? A 42 ngày B 41 ngày C 39 ngày D 40 ngày Lời giải Gọi x lượng thức ăn tiêu thụ ngày theo dự định, suy số thức ăn có 100x Ngày thứ lượng tiêu thụ thức ăn x (1 + 0, 04 ) ……… Ngày thứ t x (1 + 0, 04 ) t −1 Khi ta có x + 1, 041 x + 1, 042 x + + 1, 04t −1 x = 100 x với t số ngày thực tế tiêu thụ hết lương thực − 1, 04t Suy = 100 x ⇔ t ≈ 41 ngày Chọn B − 1, 04 Ví dụ 10: Áp suất khơng khí P (đo milimet thủy ngân, kí hiệu mmHg) theo công thức P = P0 e kx (mmHg), x độ cao (đo mét), P0 = 760 (mmHg) áp suất khơng khí mức nước biển ( x = 0) , k hệ số suy giảm Biết độ cao 1000 m áp suất khơng khí 672,71 (mmHg) Tính áp suất khơng khí độ cao 3000 m A 527,06 (mmHg) B 530,23 (mmHg) C 530,73 (mmHg) D 545,01 (mmHg) Lời giải k Ở độ cao 1000 m ta có: 672, 71 = 760.e1000 k ⇒ e1000= 672, 71 760 Áp suất khơng khí độ cao 3000 m là: 672, 71 760.= 760 = P 760 e e = = 527, 06 (mmHg) Chọn A 760 3000 k ( 1000 k ) Ví dụ 11: Một vi sinh đặc biệt X có cách sinh sản vơ tính kì lạ Tại thời điểm 0h có X , với X , sống tới thứ n (với n số nguyên dương) thời điểm đẻ lần 2n X khác Tuy nhiên chu kì X ngắn nên sau đẻ xong lần thứ chết Hỏi lúc 6h01 phút có sinh vật X sống? A 4992 B 3712 C 19264 D 5008 Lời giải Gọi sn số sinh vật sinh thứ n ta có: s0 =2; s1 =s0 =4; s2 =s1.21 + s0 22 =16 s3 =s2 + s1.22 + s0 23 =64; s4 =s3 + s2 22 + s1.23 + s0 24 =256 s5 =s4 + s3 22 + s2 23 + s1.24 =960; s6 =s5 + s4 22 + s3 23 + s2 24 =3712 Khi số sinh vật sống thứ là: T = s3 + s4 + s5 + s6 = 4992 Chọn A BÀI TẬP TỰ LUYỆN Câu 1: Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0,4%/tháng Biết khơng rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn ban đầu lãi) gần với số tiền đây, khoảng thời gian người không rút tiền lãi suất không thay đổi? A 102.424.000 đồng B 102.423.000 đồng C 102.016.000 đồng D 102.017.000 đồng Câu 2: Một người gửi tiết kiệm hết 10 triệu đồng vào ngân hàng với lãi suất 7% năm Biết không rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 14,026 triệu đồng B 50,7 triệu đồng C 4,026 triệu đồng D 3,5 triệu đồng Câu 3: Một người gửi tiết kiệm vào ngân hàng với lãi suất 8,4%/năm tiền lãi hàng năm nhập vào tiền vốn Tính số năm tối thiểu người cần gửi để số tiền thu nhiều lần số tiền gửi ban đầu A 10 năm B năm C năm D 11 năm Câu 4: Một người gửi ngân hàng 100 triệu đồng với kì hạn tháng, lãi suất 5% quý theo hình thức lãi kép (sau tháng tính lãi cộng vào gốc) Sau tháng, người gửi thêm 50 triệu đồng với kì hạn lãi suất trước Tính tổng số tiền người nhận sau năm (tính từ lần gửi đầu tiên)? A 179,676 triệu đồng B 177,676 triệu đồng C 178,676 triệu đồng D 176,676 triệu đồng Câu 5: Để thực kế hoạch kinh doanh, ông A cần chuẩn bị số vốn từ Ơng có số tiền 500 triệu đồng gửi tiết kiệm với lãi suất 0,4%/tháng theo hình thức lãi kép Sau 10 tháng, ông A gửi thêm vào 300 triệu lãi suất tháng sau có thay đổi 0,5%/tháng Hỏi sau năm kể từ lúc gửi số tiền ban đầu, số tiền ông A nhận gốc lẫn lãi bao nhiêu? (Khơng tính phần thập phân) A 879693600 B 880438640 C 879693510 D 901727821 Câu 6: Một người gửi tiết kiệm vào ngân hàng với lãi suất 6,1%/năm Biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào vốn để tính lãi cho năm Hỏi sau năm người thu (cả số tiền gửi ban đầu lãi) gấp đôi số tiền gửi ban đầu, giả định khoảng thời gian lãi suất không thay đổi người khơng rút tiền? A 13 năm B 10 năm C 11 năm D 12 năm Câu 7: Ông V gửi tiết kiệm 200 triệu đồng vào ngân hàng với hình thức lãi kép lãi suất 7,2% năm Hỏi sau năm ông V thu số tiền (cả vốn lẫn lãi) gần với số sau đây? A 283.145.000 đồng B 283.155.000 đồng C 283.142.000 đồng D 283.151.000 đồng Câu 8: Dân số giới dự đốn theo cơng thức P ( t ) = aebt , a, b số, t năm tính dân số Theo số liệu thực tế, dân số giới năm 1950 2560 triệu người; dân số giới năm 1980 3040 triệu người Hãy dự đoán dân số giới năm 2020? A 3823 triệu B 5360 triệu C 3954 triệu D 4017 triệu Câu 9: Một người gửi 50 triệu đồng vào ngân hàng với lãi suất 7%/năm Biết khơng rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào gốc để tính lãi cho năm Hỏi sau năm người rút lãi số tiền lãi người nhận gần với số tiền đây? Nếu khoảng thời gian người không rút tiền lãi suất không thay đổi A 20,128 triệu đồng B 17,5 triệu đồng C 70,128 triệu đồng D 67,5 triệu đồng Câu 10: Một người gửi 50 triệu đồng vào ngân hàng với lãi suất 8,4%/năm Cứ sau năm, số tiền lãi nhập vào vốn ban đầu để tính lãi cho năm Người lĩnh số tiền vốn lẫn lãi 80 triệu đồng sau n năm Hỏi khoảng thời gian người khơng rút tiền lãi suất khơng thay đổi n gần với A B C D Câu 11: Một người gửi ngân hàng 100 triệu đồng theo hình thức lãi kép, lãi suất r = 0,5% tháng (kể từ tháng thứ 2, tiền lãi tính theo phần trăm tổng tiền có tháng trước với tiền lãi tháng trước đó) Sau tháng, người có nhiều 125 triệu A 45 tháng B 46 tháng C 47 tháng D 44 tháng Câu 12: Một người gửi tiết kiệm với số tiền gửi A đồng với lãi suất 6% năm, biết không rút tiền khỏi ngân hàng sau năm số tiền lãi nhập vào gốc để tính gốc cho năm Sau 10 năm người rút số tiền gốc lẫn lãi nhiều số tiền ban đầu 100 triệu đồng? Hỏi người phải gửi số tiền A bao nhiêu? A 145037058,3 đồng B 55839477,69 đồng C 126446589 đồng D 111321563,5 đồng Câu 13: Ông A gửi 15 triệu đồng vào ngân hàng theo thể thức lãi kép kỳ hạn năm với lãi suất 7,65%/năm Giả sử lãi suất không thay đổi Hỏi sau năm, ông A thu vốn lẫn lãi triệu đồng? A 15 ( 0, 0765 ) triệu đồng B 15 1 + ( 0, 0765 ) triệu đồng C 15.[1 + 0, 765] triệu đồng D 15 (1 + 0, 0765 ) triệu đồng 5 Câu 14: Một người gửi triệu đồng vào ngân hàng theo thể thức lãi kép kỳ hạn năm với lãi suất 7,56%/năm Hỏi sau năm, người gửi có 12 triệu đồng từ số tiền gửi ban đầu (giả sử lãi suất không thay đổi) A năm B 10 năm C 12 năm D năm Câu 15: Bác Bình cần sửa lại nhà với chi phí tỷ đồng Đặt kế hoạch sau năm phải có đủ số tiền năm bác Bình cần gửi vào ngân hàng khoản tiền tiết kiệm gần giá trị sau đây, biết lãi suất ngân hàng 7%/năm lãi hàng năm nhập vào vốn A 162 triệu đồng B 162,5 triệu đồng C 162,2 triệu đồng D 162,3 triệu đồng Câu 16: Biết đỗ vào trường đại học X , sinh viên cần nộp khoản tiền lúc nhập học triệu đồng Bố mẹ Minh tiết kiệm để đầu tháng gửi số tiền vào ngân hàng theo hình thức lãi kép Hỏi tháng, họ phải gửi số tiền (làm trịn đến hàng nghìn) để sau tháng, rút gốc lẫn lãi triệu đồng, biết lãi suất 0,5%/tháng A 542.000 đồng B 555.000 đồng C 556.000 đồng D 541.000 đồng Câu 17: Một người gửi tiết kiệm theo thể thức lãi kép sau: Mỗi tháng, người tiết kiệm số tiền X đồng gửi vào ngân hàng theo kỳ hạn tháng với lãi suất 0,8%/tháng Tìm X để sau năm kể từ ngày gửi lần người có tổng số tiền 500 triệu đồng 4.106 A X = 1, 00837 − C X = 4.106 B X = − 0, 00837 4.106 1, 008 1, 00836 − ( D X = ) 4.106 1, 00836 − Câu 18: Anh Phúc đầu tư 100 triệu đồng vào công ty theo mức lãi kép với lãi sấut 15% năm Giả sử lãi suất hàng năm không thay đổi Hỏi sau năm, số tiền lãi anh Phúc gần với giá trị sau đây? A 104,6 triệu đồng B 52,1 triệu đồng C 152,1 triệu đồng D 4,6 triệu đồng Câu 19: Một người có 10 triệu đồng gửi vào ngân hàng với kỳ hạn tháng (1 quý tháng), lãi suất 6%/1 quý theo hình thức lãi kép (sau tháng tính lãi cộng vào gốc) Sau tháng, người lại gửi thêm 20 triệu đồng với hình thức lãi suất Hỏi sau năm, tính từ lần gửi đầu tiên, người nhận số tiền gần kết nhất? A 35 triệu B 37 triệu C 36 triệu D 38 triệu Câu 20: Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết rằng, không rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Nếu sau năm rút lãi người thu số tiền lãi là: A 20,128 triệu đồng B 70,128 triệu đồng C 3,5 triệu đồng D 50,7 triệu đồng Câu 21: Ông A mong muốn sở hữu khoản tiền 200.000.000 đồng vào ngày 2/3/2012 tài khoản lãi suất năm 6,05% Hỏi ông A cần đầu tư tiền tài khoản vào ngày 2/3/2007 để đạt mục tiêu đề ra? A 14.909.9652,5 đồng B 14.909.9652,6 đồng C 14.909.9552,5 đồng D 14.909.8652,5 đồng Câu 22: Ông A gửi 9,8 triệu đồng tiết kiệm với lãi suất 8,4%/năm lãi suất năm nhập vào vốn hỏi theo cách sau năm người thu tổng số tiền 20 triệu đồng (biết lãi suất không thay đổi) A năm B năm C năm D 10 năm Câu 23: Ông A gửi tiết kiệm với lãi suất 8,4%/năm lãi suất năm nhập vào vốn Hỏi sau năm người thu gấp đơi số tiền ban đầu? A năm B năm C năm D 10 năm Câu 24: Anh A mua nhà trị giá 300 triệu đồng theo phương thức trả góp Nếu cuối tháng, tháng thứ anh A trả 5.500.000 đồng chịu lãi suất số tiền chưa trả 0,5%/tháng sau tháng anh A trả hết số tiền A n = 64 B n = 60 C n = 65 D n = 64,1 Câu 25: Bà A gửi 100 triệu đồng vào tài khoản định kỳ tính lãi kép với lãi suất 8%/năm Sau năm, bà rút toàn dùng nửa để sửa nhà, số tiền lại bà tiếp tục đem gửi ngân hàng năm với lãi suất Tính số tiền lãi thu sau 10 năm A 81,412 triệu đồng B 115,892 triệu đồng C 119 triệu đồng D 78 triệu đồng Câu 26: Một lon nước soda 80° F đưa vào máy làm lạnh chứa đá 32° F Nhiệt độ soda phút thứ t tính theo định luật Newton cơng thức T ( t= ) 32 + 48 ( 0,9 ) Phải làm mát soda t để nhiệt độ 50° F ? A t = 1,56 phút B t = 9,3 phút C t = phút D t = phút Câu 27: Cường độ trận động đất M (richter) cho công thức= M log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỉ XX , trận động đất San Francisco có cường độ 8,3 độ richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Tính cường độ trận động đất Nam Mỹ A 8,9 độ richter B 33,2 độ richter C 2,075 độ richter D 11 độ richter Câu 28: Giả sử = n f= ( t ) n0 2t số lượng cá thể đám vi khuẩn thời điểm t giờ, n0 số lượng cá thể lúc ban đầu Biết tốc độ phát triển số lượng vi khuẩn thời điểm t f ′ ( t ) Giả sử mẫu thử ban đầu có n0 = 100 vi khuẩn Vậy tốc độ phát triển sau vi khuẩn? A 1600 B 1109 C 500 D 3200 Câu 29: Các loài xanh trình quang hợp nhận lượng nhỏ cacbon 14 (một đồng vị cacbon) Khi phận chết tượng quang hợp ngưng khơng nhận thêm cacbon 14 Lượng cacbon 14 phận phân hủy cách chậm chạp, chuyển hóa thành nito 14 Biết gọi P ( t ) số phần trăm cacbon 14 lại phận sinh t trưởng từ t năm trước P ( t ) tính theo cơng thức P ( t ) = 100 ( 0,5 ) 5750 ( % ) Phân tích mẫu gỗ từ cơng trình kiến trúc cổ, người ta thấy lượng cacbon 14 lại mẫu gỗ 65% Niên đại cơng trình kiến trúc gần với số sau đây? A 41776 năm B 6136 năm C 3574 năm D 4000 năm Câu 30: Năng lượng trận động đất tính E = 1, 74.1019.101,44 M , với M độ lớn theo tháng độ richter Thành phố A xảy trận động đất độ richter lượng gấp 14 lần trận động đất xảy thành phố B Hỏi độ lớn trận động đất xảy thành phố B bao nhiêu? A 7,2 độ richter B 7,8 độ richter C 9,6 độ richter D 6,9 độ richter Câu 31: Người ta quy ước lg x log x giá trị log10 x Trong lĩnh vực kỹ thuật, lg x sử dụng nhiều, kể máy tính cầm tay hay quang phổ Hơn nữa, toán học, người ta sử dụng lg x để = n tìm chữ số số ngun dương Ví dụ số A có n chữ số [lg A] + với [lg A] số nguyên lớn nhỏ A Hỏi số 2017 2017 có chữ số? A 9999 chữ số B 6666 chữ số C 6665 chữ số D 6699 chữ số Câu 32: E.Coli (Escherichia coli) vi khuẩn đường ruột gây tiêu chảy, đau bụng dội Cứ sau 20 phút số lượng vi khuẩn E.Coli lại tăng gấp đơi Ban đầu có 60 vi khuẩn E.coli đường ruột Hỏi sau giờ, số lượng vi khuẩn E.Coli bao nhiêu? A 1006632960 vi khuẩn B 2108252760 vi khuẩn C 158159469 vi khuẩn D 3251603769 vi khuẩn LỜI GIẢI BÀI TẬP TỰ LUYỆN Câu 1: Áp dụng công thức lãi kép suy số tiền gốc lẫn lãi người có sau tháng là: T= 100 (1 + 0, 4% ) ≈ 102.424.000 đồng Chọn A Câu 2: Áp dụng công thức lãi kép suy số tiền gốc lẫn lãi người thu sau năm là: T 10 (1 + 7% ) = Do số tiền lãi người có sau 65 năm là: T = 10 (1 + 7% ) − 10 ≈ 4, 026 triệu đồng Chọn C Câu 3: Giả sử số tiền gửi A số tiền thu gốc lẫn lãi sau n năm là:= T A (1 + 8, 4% ) n Giả thiết toán thỏa mãn A (1 + 8, 4% ) > A ⇔ n > log1,084 = 8,59 n Do tối thiểu người cần gửi năm để số tiền thu nhiều gấp lần số tiền ban đầu Chọn B Câu 4: quý = tháng suy r = 5% /3 tháng Số tiền người thu từ 100 triệu ban đầu sau năm là: = T1 100 (1 + 5% ) Số tiền người thu từ 50 triệu đồng sau tháng cuối là:= T2 50 (1 + 5% ) Tổng số tiền người thu T = T1 + T2 =176, 676 triệu đồng Cách 2: Ta có: T = (T1 + 50 )(1 + 5% ) Chọn D Câu 5: Số tiền gốc lẫn lãi ơng A có sau 10 tháng là: = T1 500 (1 + 0, 4% ) 10 Sau ơng A gửi thêm 300 triệu với lãi suất tháng sau có thay đổi 0,5%/tháng Số tiền ông A thu tổng cộng sau năm là: T2 =+ 879, 693510 triệu đồng Chọn (T1 300 )(1 + 0,5% ) = 14 C Câu 6: Giả sử số tiền gửi A số tiền thu gốc lẫn lãi sau n năm là:= T A (1 + 6,1% ) n Giả thiết toán thỏa mãn A (1 + 6,1% ) > A ⇔ n > log1,061 = 11, 71 n Do tối thiểu người cần gửi 12 năm để số tiền thu nhiều gấp lần số tiền ban đầu Chọn D Câu 7: Sau năm ông V thu số tiền (cả vỗn lẫn lãi) là: =200 (1 + 7, 2% ) ≈ 283.142.000 đồng Chọn C Câu 8: Ta có dân số giới năm 1950: P (1950 = = a.e1950b (1) ) 2560 = = a.e1980b ( ) Dân số giới năm 1980 là: P (1980 ) 3040 b Từ (1) (2) suy e30= 3040 b ⇒ e= 2560 30 3040 2560 40 3040 Suy dân số giới năm 2020 là: P (= 2020 ) a= e e 3040 30 a.e = ≈ 3823 triệu người 2560 2020 b Chọn A 1980 b 40 b Câu 9: Số tiền gốc lẫn lãi người thu sau năm là:= T 50 (1 + 7% ) Suy số tiền lãi người nhận sau năm 50 (1 + 7% ) − 50 ≈ 20,128 triệu đồng Chọn A Câu 10: Số tiền gốc lẫn lãi người thu sau n năm là: 50 (1 + 8, 4% ) n Người lĩnh số tiền vốn lẫn lãi 80 triệu đồng 50 (1 + 8, 4% ) = 80 n = ⇔ n log1,084 80 ≈ 5,83 năm Vậy cần năm để người lĩnh số tiền vốn lẫn lãi 80 triệu đồng 50 Chọn B Câu 11: Số tiền gốc lẫn lãi người sau n năm là: = T 100 (1 + 0,5% ) Để số tiền nhiều 125 triệu 100 (1 + 0,5% ) > 125 ⇔ n > log1,005 n n 125 ≈ 44, 74 tháng 100 Vậy cần 45 tháng để người có nhiều 125 triệu Chọn A Câu 12: Theo ta có số tiền gốc lẫn lãi: A (1 + 6% ) 10 Vì sau 10 năm người rút số tiền gốc lẫn lãi nhiều số tiền ban đầu 100 triệu đồng nên ta có: (1 + 6% ) 10 ( ) = A + 100 ⇒ A 1, 0610 − = 100 Suy số tiền A = cần gửi 100000000 = 126446589 đồng Chọn C 1, 0610 − Câu 13: Sau năm, ông A thu vốn lẫn lãi là: T = 15 (1 + 7, 65% ) = 15 (1 + 0, 0765 ) triệu đồng 5 Chọn D Câu 14: Theo ta có số tiền gốc lẫn lãi: (1 + 7,56% ) ≥ 12 n ⇒ n ≥ log1,0756 ≈ 9,51 năm Vậy sau 10 năm người gửi có 12 triệu đồng từ số tiền gửi ban đầu Chọn B Câu 15: Áp dụng công thức Tn= A n (1 + r ) − 1 (1 + r ) r Với A số tiền gửi ban đầu, n thời gian gửi, r lãi suất, Tn số tiền thu Ycbt ⇔ 1000 = A 1000.7% + 7% ) − 1 (1 + 7% ) ⇒= A = 162,5 triệu đồng Chọn B ( 7% (1 + 7% )5 − 1 (1 + 7% ) Câu 16: Áp dụng công thức Tn= A n + r ) − 1 (1 + r ) ( r Với A số tiền gửi ban đầu, n thời gian gửi, r lãi suất, Tn số tiền thu Ycbt ⇔ 5.10 = A 5.106.0,5% + 0,5% − 1 + 0,5% = ⇒ A = 542000 Chọn A ( ) ( ) 0,5% (1 + 0,5% )9 − 1 (1 + 0,5% ) A n + r ) − 1 (1 + r ) ( r Câu 17: Áp dụng công thức Tn= Với = , r 0,8%,= Tn 5.108 ,= A x= n 3.12 = 36 tháng ta = 5.10 X 4.106 36 Chọn C + − + ⇒ = X 0,8% 1 0,8% ) ( ) ( 0,8% 1, 008 1, 00836 − ) ( Câu 18: Số tiền anh Phúc nhận 100 (1 + 15% ) − 100 = 52, 0875 triệu đồng Chọn B 3 Câu 19: Số tiền người nhận T = 10 (1 + 6% ) + 20 (1 + 6% ) ≈ 36, 44 triệu Chọn B Câu 20: Số tiền lãi người nhận 50 (1 + 7% ) − 50 ≈ 20,128 Chọn A Câu 21: Yêu cầu toán ⇔ 200000000= A (1 + 6, 05% ) ⇔ A= 14.909.965, 25 đồng Chọn A Câu 22: Yêu cầu toán ⇔ 20 = 9,8 × (1 + 8, 4% ) ⇔ n = log1,084 n 20 ≈ 8,84 Chọn A 9,8 Câu 23: Yêu cầu toán ⇔ = (1 + 8, 4% ) ⇔ n = log1+8,4% ≈ 8, Chọn A n Câu 24: Áp dụng công thức a = Nr (1 + r ) (1 + r ) n n −1 , với N số tiền vay, a số tiền trả hàng tháng Với = N 300.10 = , r 0,5%, = a 5500000 ta 5500000 = 300.106.0,5% (1 + 0,5% ) (1 + 0,5% ) n −1 n ⇔ 1, 005n = 11 11 ⇔ n = log1,005 ≈ 63,8 Chọn A 8 Câu 25: Sau năm số tiền bà A có 100 (1 + 8% ) = 146,933 triệu đồng Số tiền bà A lại sau sửa nhà 146,933 : = 73, 467 triệu đồng Số tiền bà A có sau năm gửi ngân hàng 73, 467 (1 + 8% ) = 107,946 triệu đồng Vậy tổng số tiền lãi bà A thu sau 10 năm 81, 412 triệu đồng Chọn A (146,933 − 100 ) + (107,946 − 73, 467 ) = Câu 26: Ta có: T ( t1= ) 80= 32 + 48.0,9t1 T ( t2=) 50= 32 + 48.0,9t2 ⇒ t1= log 0,9 ⇒ t2 = log 0,9 18 ⇒ ∆t= t2 − t1= 9,3 phút Chọn B 48 A Câu 27: Cường độ trận động đất San Francisco là: = M log = 8,3 A0 Cường độ trận động đất Nam Mỹ M =log Câu 28: Ta có: f ′ ( t ) = n0 2t ln 4A A =log + log =8,9 độ richter Chọn A A0 A0 Do tốc độ phát triển vi khuẩn sau = là: f ′ ( ) 100.2 = ln 1109 Chọn B t t Câu 29: Ta có: P ( t ) = 100 ( 0,5 ) 5750 = 65 ⇒ ( 0,5 ) 5750 = 0, 65 ⇒ t = 5750 log 0,5 0, 65 = 3574 năm Chọn C E EA log log 1, 74.10 1, 74.109 Câu = 30: Ta có: M = ,suyra M A = 1, 44 1, 44 1 EA log 1, 74.10 14 = M − log14 ≈ 7, Chọn A Trong EB = E A ⇒ M B = A 14 1, 44 1, 44 Câu 31: Ta có log B log = = 2017 2017 2017 log 2017 ≈ 6665, Do số B = 2017 2017 có: 6665 + = 6666 chữ số Chọn B Câu 32: chu kì nhân đôi: r = 100% , Đổi = 480 phút = 24 chu kì Số lượng vi khuẩn: = 60 (1 + 1) = 60.224 = 1006632960 vi khuẩn Chọn A 24 ... (1 + 0, 27% ) (1 + 0, 27% ) − 1 BÀI TỐN TRẢ GĨP HÀNG THÁNG Giả sử người vay số tiền T , sau tháng kể từ ngày vay, tháng người trả số tiền m sau n tháng Số tiền gốc lẫn lãi sinh từ số tiền... + + m = m n −1 r (1 + r ) − m n −1 r T r (1 + r ) =0 ⇔ m = n (1 + r ) − n Ví dụ 1: Một người vay ngân hàng 100 triệu đồng với lãi suất 0,7%/tháng theo thỏa thuận tháng người trả cho ngân hàng... 24 D 21 Lời giải Ta có a = A.r (1 + r ) (1 + r ) n n −1 với a số tiền trả hàng tháng, A số tiền vay ngân hàng, r lãi suất 100.0, 7% (1 + 0, 7% ) Do ta có = = ⇒ n 21, 62 nên sau 22 tháng trả hết