Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 44 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
44
Dung lượng
301,69 KB
Nội dung
ĐẠI HỌC HUẾ
TRƯỜNG ĐẠI HỌC SƯ PHẠM HUẾ
Đinh Văn Phúc
KHÔNG GIANMÊTRICNIKODYMVÀTÍNH CHẤT
Bộ môn: Giải tích
KHÓA LUẬN TỐT NGHIỆP
Người hướng dẫn: PGS.TS. Lê Văn Hạp
Huế, Khóa học 2009 - 2013
LỜI CẢM ƠN
Khóa luận này được hoàn thành không chỉ là kết quả của sự cố gắng,
nỗ lực của bản thân mà trước hết là nhờ sự giúp đỡ và hướng dẫn tận tình,
chu đáo của thầy giáo PGS.TS. Lê Văn Hạp, em xin bày tỏ lòng biết ơn
chân thành và sâu sắc đến thầy.
Em xin thành cảm ơn quý thầy cô đã hết lòng dạy dỗ, giúp đỡ em
trong suốt những năm qua.
Em xin gửi đến gia đình, những người thân yêu và những người bạn
của em lời biết ơn chân thành sâu lắng, những người luôn sát cánh bên
em, động viên và tạo mọi điều kiện cho em được học tập cũng như trong
suốt quá trình hoàn thành khóa luận này.
Huế, ngày 6 tháng 05 năm 2013
Sinh viên
Đinh Văn Phúc
Mục lục
Lời mở đầu 3
1 MỘT SỐ KIẾN THỨC CHUẨN BỊ 5
1.1 Tập thương và quan hệ tương đương . . . . . . . . . . . . 5
1.2 Khônggianmêtric . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Khônggian độ đo . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Hàm đo được . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Tích phân Lebesgue . . . . . . . . . . . . . . . . . . . . . 11
1.6 Tích phân coi như một hàm tập . . . . . . . . . . . . . . . 12
1.7 Khônggian L
p
, 1 ≤ p < +∞ . . . . . . . . . . . . . . . . 13
2 KHÔNGGIANMÊTRICNIKODYMVÀTÍNHCHẤT 15
2.1 Đạo hàm Radon-Nikodym . . . . . . . . . . . . . . . . . . 15
2.2 KhônggianmêtricNikodym . . . . . . . . . . . . . . . . . 25
Kết luận 42
Tài liệu tham khảo 43
2
LỜI MỞ ĐẦU
Không gianmêtricvà lý thuyết độ đo tích phân là một phần quan
trọng trong lý thuyết hàm số biến số thực, chúng cùng với giải tích hàm
làm nền tảng cho kiến thức toán học của sinh viên. Trong chương trình học
ở đại học, học phần khônggian mêtric-không gian Tôpô được học ở học
kì hai của năm thứ hai, học phần lí thuyết độ đo và tích phân được học ở
học kì một năm thứ ba. Đây là những học phần không thể thiếu đối với
sinh viên ngành toán ở bậc đại học, các học phần này giúp chúng em làm
quen và nắm được khái niệm, tínhchất của khônggian mêtric, không gian
độ đo và lí thuyết tích phân Đặc biệt là khônggianmêtric có những tính
chất thú vị, gần gũi với hình học. Khóa luận này đi sâu nghiên cứu về một
trường hợp đặc biệt của không mêtric, đó là khônggianmêtric Nikodym.
Không gianmêtricNikodym được xây dựng dựa trên một không gian
độ đo hữu hạn và nó có một số tínhchất khá thú vị, có mối liên hệ chặt
chẽ với khônggian độ đo. Nội dung của khóa luận đề cập đến khái niệm
không gianmêtric Nikodym, các tínhchất của khônggian này đồng thời
chỉ ra mối liên hệ giữa nó với khônggian L
p
, 1 ≤ p < ∞.
Nội dung nghiên cứu của em là dựa trên cuốn sách [7], trong đó các
khái niệm, kết quả được nghiên cứu và trình bày lại một cách rõ ràng và
đầy đủ hơn. Tuy không phải là những kết quả mới được tìm thấy, nhưng
3
4
với tinh thần tìm tòi học hỏi kiến thức mới, hy vọng đề tài này sẽ đem lại
nhiều kiến thức bổ ích cho bản thân và nhiều thú vị cho độc giả. Nội dung
khóa luận gồm hai chương:
Chương I: Một số kiến thức chuẩn bị.
Chương II: KhônggianmêtricNikodymvàtính chất.
Tuy đã có nhiều cố gắng, song do hạn chế về thời gianvà năng lực
bản thân nên khóa luậnkhông tránh khỏi những sai sót, rất mong được
sự quan tâm góp ý của thầy cô và các bạn.
Em xin chân thành cảm ơn!
Huế, ngày 6 tháng 05 năm 2013
Tác giả
Chương 1
MỘT SỐ KIẾN THỨC CHUẨN
BỊ
1.1 Tập thương và quan hệ tương đương
Định nghĩa 1.1.1. Cho R là một quan hệ hai ngôi trong A. Khi đó:
i. R được gọi là phản xạ nếu
∀x∈A, xRx.
ii. R được gọi là đối xứng nếu
∀x, y∈A, xRy ⇒ yRx.
iii. R được gọi là bắc cầu nếu
∀x, y, z∈A, xRy và yRz ⇒ xRz.
Định nghĩa 1.1.2. Một quan hệ hai ngôi R trong A được gọi là quan hệ
tương đương nếu R thỏa mãn ba tính chất: phản xạ, đối xứng và bắc cầu.
Quan hệ tương đương được ký hiệu là ∼.
Định nghĩa 1.1.3. Cho ∼ là một quan hệ tương đương trong X và x ∈X.
Khi đó:
i. Tập hợp ¯x={ y∈X | y∼x} được gọi là lớp tương đương của x theo quan
5
6
hệ ∼.
ii. Tập hợp X/
∼
= { ¯x | x∈X} được gọi là tập hợp thương của X trên
quan hệ tương đương ∼.
1.2 Khônggian mêtric
Định nghĩa 1.2.1. Giả sử X là một tập bất kỳ khác trống. Ta gọi hàm số
d: X×X → R là một mêtric (hay khoảng cách) trên X nếu hàm số này
thỏa mãn ba tiên đề sau đây:
1. d(x, y) 0, ∀x, y∈X ; d(x, y) = 0 khi và chỉ khi x = y,
2. d(x, y) = d(y, x) ( tính đối xứng ),
3. d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z∈X ( bất đẳng thức tam giác ).
Khi đó tập X cùng với mêtric d đã cho được gọi là một khônggian mêtric
và kí hiệu là (X, d).
Định nghĩa 1.2.2. Khônggianmêtric X được gọi là tách được nếu có
một tập con hữu hạn hay đếm được A ⊂ X trù mật khắp nơi.
Mệnh đề 1.2.3. ([7]. MĐ 26, tr 204). Khônggian con của một không
gian mêtric tách được là tách được.
Định nghĩa 1.2.4. Tập A ⊂ X được gọi là compact nếu với mọi dãy
(x
n
)
n
⊂ A đều tồn tại một dãy con (x
n
k
)
k
⊂ (x
n
)
n
hội tụ về một điểm
x
0
∈ A. Nếu X là tập compact thì ta nói X là khônggian compact.
Định nghĩa 1.2.5. Định nghĩa khônggianmêtric đầy đủ.
1. Dãy (x
n
)
n
trong khônggianmêtric X được gọi là dãy cơ bản hay dãy
Cauchy nếu lim
m,n→0
d(x
m
, x
n
) = 0. Nói cách khác (x
n
)
n
là dãy cơ bản khi và
7
chỉ khi:
(∀ε > 0)(∃n
0
)(∀m, n ≥ n
0
) : d(x
m
, x
n
) < ε.
2. Khônggianmêtric X được gọi là khônggianmêtric đầy đủ nếu mọi dãy
cơ bản của nó đều hội tụ trong X.
Định nghĩa 1.2.6. Cho M là một tập con của khônggianmêtric X. Ta
gọi M là tập không đâu trù mật nếu nó không trù mật trong bất kì hình
cầu nào cả. Nói một cách tương đương:
( M⊂X là tập không đâu trù mật ) ⇔ (
◦
M= ∅).
Định nghĩa 1.2.7. Giả sử A là một tập con của khônggianmêtric X. Ta
gọi A là tập thuộc phạm trù I trong X nếu tồn tại một dãy các tập không
đâu trù mật A
1
, A
2
, sao cho A=
∞
∪
n=1
A
n
.
Tập A⊂X được gọi là thuộc phạm trù II nếu nó không phải là tập
thuộc phạm trù I.
Định lí 1.2.8. (Định lí Baire-Category)([1]. ĐL 4.3.4, tr 58).
Giả sử X là một khônggianmêtric đầy đủ. Khi đó X là tập thuộc
phạm trù II.
Hệ quả 1.2.9. Giả sử X là một khônggianmêtric đầy đủ và (A
n
)
n
là
dãy các tập con của X sao cho X=
∞
∪
n=1
A
n
. Khi đó tồn tại n
0
∈ N sao cho
◦
A
n
0
= ∅.
Định lí 1.2.10. ([7]. ĐL 7, tr 213) Cho X là một khônggian mêtric
đầy đủ và (f
n
)
n
là một dãy các hàm thực liên tục trên X hội tụ điểm trong
X tới hàm f nhận giá trị thực thì có một tập con D trù mật trong X sao
cho (f
n
)
n
là liên tục đồng bậc và f là liên tục tại mỗi điểm trong D.
8
1.3 Khônggian độ đo
Định nghĩa 1.3.1. Một đại số là một lớp các tập con của X chứa X, ∅
và kín đối với mọi phép toán hữu hạn về tập hợp ( phép hợp và phép giao
một số hữu hạn tập, phép trừ và phép trừ đối xứng hai tập).
Định lí 1.3.2. Một lớp C là một đại số khi và chỉ khi C không rỗng và
thỏa mãn hai điều kiện:
a. A∈C, B∈C ⇒ A∪B ∈ C,
b. A∈C, A
c
= X\A∈ C.
Định nghĩa 1.3.3. Một σ-đại số là một lớp tập các tập con của X chứa
X, ∅ và kín đối với mọi phép toán hữu hạn hay đếm được về tập.Dĩ nhiên
một σ-đại số cũng là một đại số.
Định lí 1.3.4. Một lớp F là một σ-đại số khi và chỉ khi F không rỗng và
thõa mãn các điều kiện:
a. A
n
∈ F (n = 1, 2, 3, ) ⇒
∞
∪
n=1
A
n
∈ F,
b. A ∈ F ⇒A
c
= X\A ∈ F.
Định nghĩa 1.3.5. (Hàm tập hợp). Cho X là một tập tùy ý, M là một
lớp tập con của X. Một hàm µ xác định trên M gọi là một hàm tập.
Hàm đó là cộng tính nếu:
A, B∈ M, A∩B=∅, A∪B∈ M ⇒ µ(A∪B)=µ(A)+µ(B).
Bằng qui nạp chúng ta chứng minh được rằng nếu µ là cộng tính thì
nó cũng hữu hạn cộng tính tức là với A
i
∈ M, i = 1, 2, 3, n, A
i
∩A
j
= ∅,
∪
n
i=1
A
i
∈ M thì µ(∪
n
i=1
A
i
)=
n
i=1
µA
i
.
Hàm tập µ gọi là σ-cộng tính nếu A
i
∈ M, i = 1, 2, 3, , A
i
∩A
j
= ∅,
9
i=j và
∞
∪
i=1
A
i
∈ M thì µ(
∞
∪
i=1
A
i
)=
∞
i=1
µA
i
.
Định nghĩa 1.3.6. Một hàm tập µ gọi là một độ đo nếu nó được xác định
trên một đại số C và thỏa mãn 3 điều kiện sau:
(i) µ(A)0 với mọi A∈ C,
(ii) µ(∅) = 0,
(iii) µ là σ-cộng tính.
Một độ đo µ gọi là hữu hạn nếu µ(X)<+∞, σ-hữu hạn nếu:
X=
∞
∪
i=1
X
i
, X
i
∈ C, µ(X
i
)<+∞.
∗ Một số tính chất
Định lí 1.3.7. ( [1]. ĐL 1, tr 11). Nếu µ là độ đo trên đại số C thì:
i. A ∈C, B∈C, B ⊂A⇒ µ(B) ≤ µ(A).
ii. A, B∈C, B ⊂A, µ(B) <+∞⇒ µ(A\B)= µ(A)−µ(B).
iii. A
i
∈C (i=1,2,3 ) A∈C, A⊂
∞
∪
i=1
A
i
⇒ µ(A) ≤
∞
i=1
µ(A
i
).
iv. A
i
∈C (i=1,2,3 ), A
i
∩A
j
= ∅, i = j A∈C, A⊃
∞
∪
i=1
A
i
⇒ µ(A) ≥
∞
i=1
µA
i
.
Hệ quả 1.3.8. Nếu độ đo µ là σ-hữu hạn thì mọi tập A ∈ C đều có thể
phân tích thành một số đếm được tập có độ đo hữu hạn.
Định lí 1.3.9. ( [1], ĐL 2, tr 12). Nếu µ là độ đo trên đại số C thì:
i. µ(A
i
) = 0 (i=1,2,3 ),
∞
∪
i=1
A
i
∈ C ⇒ µ(
∞
∪
i=1
A
i
) = 0.
ii. A ∈ C, µ(B)=0 ⇒ µ(A∪B) = µ(A\B)= µ(A).
Định lí 1.3.10. ( [3]. ĐL 3, tr 13). Nếu µ là độ đo trên đại số C thì:
[...]... ([B], [C]) Vậy ρµ là một mêtric Chúng ta gọi Mêtric này là MêtricNikodymvà gọi khônggian (M , ρµ ) là khônggianmêtricNikodym liên kết với khônggian độ đo (X, M, µ) Ví Dụ: Cho (X, M, µ) là một khônggian độ đo và cho f là một hàm không âm khả tích trên X , ta biết rằng hàm tập ν(E) = f dµ với mọi E E ∈ M là một độ đo hữu hạn.Khi đó (M , ρν ) là một khônggianmêtricNikodym Bây giờ cho ν là một... Chương 2 KHÔNGGIANMÊTRICNIKODYMVÀTÍNHCHẤT 2.1 Đạo hàm Radon -Nikodym Cho (X, M, µ) là một khônggian độ đo và f là một hàm không âm đo được đối với M, ta định nghĩa một hàm tập ν trên M như sau: f dµ với mọi E ∈ M ν(E) = E Chúng ta đã biết rằng khi đó ν là một độ đo trên khônggian đo được (X, M) và nó có tính chất: nếu E ∈ M và µ(E) = 0 thì ν(E) = 0 Định nghĩa 2.1.1 Cho một khônggian độ đo... số tínhchất của đạo hàm Radon -Nikodym Cho (X, M, µ) là một không gian độ đo và ν là độ đo dấu trên không gian đo được (X, M) Khi đó Đạo hàm Radon -Nikodym của ν đối với µ nếu tồn tại là một hàm đo được dν dµ trên X sao cho ν(E) = E dν dµ, dµ ∀E ∈ M Khi đó ta có một số tính của đạo hàm Radon -Nikodym của ν đối với µ dưới đây Tínhchất 2.1.9 Cho (X, M, µ) là một không gian độ đo và ν là độ đo dấu trên không. .. tuyệt đối liên tục đối với µ nếu và chỉ nếu mỗi ε > 0, có một δ > 0 sao cho nếu µ(E) < δ , thì ν(E) < ε, có nghĩa là nếu ν là hữu hạn, thì ν là tuyệt đối liên tục đối với µ nếu và chỉ nếu hàm tập ν là liên tục với không gian 32 mêtric liên kết Nikodym tại ∅ Tuy nhiên chúng ta sẽ suy luận từ Bổ đề 2.2.2 nếu một độ đo hữu hạn ν trên M là liên tục với khônggianmêtric liên kết Nikodym tại một tập E0 trong... , nhận giá trị thực và dν dµ = g hầu khắp nơi trên X đối với µ Do vậy g là đạo hàm Radon -Nikodym của ν đối với µ Tínhchất 2.1.12 Cho µ, ν và λ là các độ đo σ -hữu hạn trên không gian đo được (X, M) i Nếu ν . của không mêtric, đó là không gian mêtric Nikodym.
Không gian mêtric Nikodym được xây dựng dựa trên một không gian
độ đo hữu hạn và nó có một số tính chất. < +∞.
Chương 2
KHÔNG GIAN MÊTRIC
NIKODYM VÀ TÍNH CHẤT
2.1 Đạo hàm Radon -Nikodym
Cho (X, M, µ) là một không gian độ đo và f là một hàm không âm
đo được