Câu 1: Cho hàm số 7)1(2)1(
24
mxmxmy
1) Định m để hàm số chỉ có cực đại mà không có cực tiểu
2) a) Khảo sát và vẽ đồ thị (C) hàm số khi m=0
b) Dùng (C), biện luận theo tham số a số nghiệm của phương trình:
0
4
4
12
8)
4
4
12
(
2
2
2
2
2
a
x
x
xx
x
x
xx
Câu 2: Giải hệ:
4)
2
1
4(
32)
2
1
4(
y
xy
x
xy
Câu 3: Giải phương trình sau:
1
)7
2
sin(
)4
2
(cot).sin(
x
xgx
Câu 4: Trong mặt phẳng toạ độ Oxy, cho đường thẳng (d):2x-y+3=0 và 2 điểm A(4;3); B(5;1).
Tìm điểm M trên (d) sao cho MA+MB nhỏ nhất
Câu 5: Trong không gian Oxyz, cho bốn điểm A(4;4;4); B(6;-6;6); C(-2;10;-2) và
S(-2;2;6).
1) Chứng minh OBAC là 1 hình thoi và chứng minh SI vuông góc với mặt phẳng
(OBAC) (I là tâm của hình thoi)
2) Tính thể tích của hình chóp S.OBAC và khoảng cách giữa 2 đường thẳng SO và AC
3) Gọi M là trung điểm SO, mặt phẳng (MAB) cắt SC tại N, tính diện tích tứ giác
ABMN
Câu 6: Tính
1
0
2
2
)2(
dx
x
ex
I
x
Câu 7: Hãy tìm số hạng có hệ số lớn nhất trong khai triển Newton của biểu thức
20
)32( x
Câu 8: Cho 4 số dương a,b,c,d.CMR:
3
2222
44
abdcdabcdabcdcba
. triển Newton của biểu thức
20
)32( x
Câu 8: Cho 4 số d ơng a,b,c ,d. CMR:
3
2222
44
abdcdabcdabcdcba
. (d) :2x-y+3=0 và 2 điểm A(4;3); B(5;1).
Tìm điểm M trên (d) sao cho MA+MB nhỏ nhất
Câu 5: Trong không gian Oxyz, cho bốn điểm A(4;4;4); B(6 ;-6 ;6); C (-2 ;10 ;-2 )