1. Trang chủ
  2. » Giáo Dục - Đào Tạo

KÌ THI THỨ ĐẠI HỌC LẦN THỨ 1 NĂM HỌC 2012 -2013 HƯỚNG DẪN CHẤM MÔN TOÁN ppt

5 262 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 216,16 KB

Nội dung

www.MATHVN.com Trang 1 – www.mathvn.com S Ở GIÁO DỤC ĐÀO TẠO HÀ TĨNH TRƯỜNG THPT TRẦN PHÚ KÌ THI THỨ ĐẠI HỌC LẦN THỨ 1 NĂM HỌC 2012 -2013 HƯỚNG DẪN CHẤM MÔN TOÁN Câu Đáp án Điểm 1.(1 điểm) Khảo sát…. • TXĐ D = ℝ • Sự biến thiên - Chiều biến thiên ( ) 2 y' 3 x 1 = − ; 2 x 1 y' 0 x 1 0 x 1 =  = ⇔ − = ⇔  = −  0.25 - Hàm số đồng biến trên các khoảng ( ) ; 1 −∞ − và ( ) 1; +∞ , ngh ị ch bi ế n trên kho ả ng ( ) 1;1 − . - C ự c tr ị : Hàm s ố đạ t c ự c đạ i t ạ i x 1 = − ; y cđ = 4, đạ t c ự c ti ể u t ạ i x 1 = và y ct = 0. - Các gi ớ i h ạ n t ạ i vô c ự c: ( ) 3 x x lim y lim x 3x 2 →−∞ →−∞ = − + = −∞ ; ( ) 3 x x lim y lim x 3x 2 →+∞ →+∞ = − + = +∞ 0.25 - B ả ng bi ế n thiên: x −∞ -1 1 +∞ y’ + 0 - 0 + y 4 +∞ −∞ 0 0.25 • Đồ th ị : Giao v ớ i Ox là ( ) A 1;0 , B( 2;0) − ; v ớ i Oy là ( ) C 0;2 0.25 2.(1.0 đ i ể m) Vì ti ế p tuy ế n vuông góc đườ ng th ẳ ng x 9y 8 0 + − = , nên ti ế p tuy ế n có h ệ s ố góc b ằ ng 9. G ọ i t ọ a độ ti ế p đ i ể m là ( ) 0 0 I x ;y . Ta có 0 2 0 0 0 x 2 f '(x ) 9 x 1 3 x 2 =  = ⇔ − = ⇔  = −  . 0.25 • Nếu 0 x 2 = , 0 y 4 = . Khi đó phương trình tiếp tuyến là 1 d : ( ) ( ) ( ) 1 y f ' 2 x 2 f 2 d : y 9x 14 = − + ⇔ = − M là giao điểm của ∆ và 1 d suy ra tọa độ M là nghiệm của hệ y 9x 14 x 3 y 2x 19 y 13 = − =   ⇔   = − + =   . Vậy ( ) M 3;13 0.25 • Nếu 0 x 2 = − , 0 y 0 = .Tương tự ta có phương trình tiếp tuyến là 2 d : y 9x 18 = + M là giao điểm của ∆ và 2 d nên tọa độ M là nghiệm của hệ 1 x y 9x 18 11 y 2x 19 207 y 11  =  = +   ⇔   = − +   =   Vậy 1 207 M ; 11 11       . 0.25 Câu 1 (2.0 đi ểm) V ậ y t ọ a độ c ủ a đ i ể m M là: ( ) M 3;13 và 1 207 M ; 11 11       . 0.25 1. (1.0 đ i ể m) Gi ả i ph ươ ng trình … Đ i ề u ki ệ n xác đị nh c ủ a pt: ( ) 3sin x sin 2x 0 sin x 3 2cosx 0 − ≠ ⇔ − ≠ . 0.25 -1 1 2 4 O x y www.MATHVN.com Trang 2 – www.mathvn.com Phương trình đã cho tương đương ( ) ( ) ( ) 2 2sin x 1 cos2x sin x 1 sin x 3 4cos x − + + = − ( ) ( ) ( ) 2 2sin x 1 cos2x sinx 1 sin x 4sin x 1 ⇔ − + + = − ( ) ( ) 2 2sin x 1 cos2x 2sin x 1 0 ⇔ − − + = . 0.25 • 1 sin x x k2 2 6 π π = ⇔ = + ∨ 5 x k2 6 π π = + Đối chiếu đkiện ta thấy x k2 6 π π = + không thỏa mãn điều kiện, 5 x k2 6 π π = + thỏa mãn đk. 0.25 • 2 k cos2x 2sin x 1 0 cos2x 0 x 4 2 π π − + = ⇔ = ⇔ = + (thỏa mãn) Vậy phương trình có các nghiệm là: k x 4 2 π π = + và 5 x k2 6 π π = + , k ∈ ℤ . 0.25 2. (1.0 điểm) Giải phương trình… Điều kiện x 0 ≠ . Phương trình đã cho tương đương 2 2 2 2x 9 2x 3 0 x 2x 9 + + − = + (1). 0.25 Đặt 2 x t 0 2x 9 = ≠ + . (1) trở thành: ( ) ( ) 2 2 1 1 2t 3 0 t 1 2t 1 0 t 1 t t 2 − + − = ⇔ − + = ⇔ = ∨ = . 0.25 • Với 2 2 2 2 x 0 x 0 1 3 2 t 2x 2x 9 x 2 2 4x 2x 9 2x 9 < <   − = ⇒ − = + ⇔ ⇔ ⇔ = −   = + =   . 0.25 Câu 2 (2.0 điểm) • Với 2 2 2 2 x 0 x 0 t 1 x 2x 9 x 2x 9 x 9 0 > >   = ⇒ = + ⇔ ⇔   = + + =   vô nghiệm. Vậy nghiệm của phương trình là 3 2 x 2 = − . 0.25 Đ i ề u ki ệ n 15 1 x 2 − ≤ ≤ . Ta có 4 2 2 2 y 2xy 7y x 7x 8 − + = − + + ⇔ ( ) ( ) ( ) ( ) 2 2 2 2 2 y x 7 y x 8 0 y x 1 y x 8 0 − + − − = ⇔ − − − + = (1) 0.25 Vì 15 x 2 ≤ ; 2 15 y 8 2 + > nên 2 x y 8 < + . Khi đó (1) 2 2 y x 1 0 y x 1 ⇔ − − = ⇔ = + . 0.25 Thế 2 y x 1 = + vào phương trình dưới, ta được 3x 16 15 2x x 1 + − − = + ( )( ) 3x 16 15 2x x 1 2x x 1 15 2x ⇔ + = − + + ⇔ = + − 2 x 0 x 0 x 3 5 x 3 x 6x 13x 15 0 6 ≥  ≥   ⇔ ⇔ ⇔ = −   = ∨ = − − =    0.25 Câu 3 ( 1.0 điểm) V ớ i x 3 = ta có 2 y 4 y 2 = ⇔ = ± V ậ y nghi ệ m c ủ a h ệ ph ươ ng trình là ( ) ( ) 3; 2 , 3;2 − . 0.25 www.MATHVN.com Trang 3 – www.mathvn.com Gọi I trung điểm BC, ta có a 3 AI 2 = . Gọi H là hình chiếu của điểm A trên đường thẳng A'I . Ta có BC AI, BC AA' ⊥ ⊥ BC AH ⇒ ⊥ . ( ) AH A'BC ⊥ . Vì G là trọng tâm ∆ ABC và AG nên ( ) ( ) ( ) ( ) A; A'BC G; A'BC 3 d AH 3d a 5 = = = . AIA' ∆ vuông t ạ i A có: 2 2 2 1 1 1 AA' a 3 AH AA' AI = + ⇒ = . Ta có 2 ABC a 3 S 4 = Thể tích của khối lăng trụ ABC.A'B'C' là ABC 2 3 a 3 3a V AA'.S a 3. 4 4 = = = ( đ vtt). 0,25 0,25 G ọ i D là đ i ể m đố i x ứ ng c ủ a B’ qua A’, ta có ABA'D là hình bình hành suy ra A’B và AD song song. Do đ ó góc gi ữ a đườ ng th ẳ ng A’B và AC’ b ằ ng góc gi ữ a đườ ng th ẳ ng AC’ và AD. 0.25 Câu 4 ( 1.0 điểm) Ta có B'C'D ∆ vuông t ạ i C’, suy ra 2 2 C'D B'D B'C' a 3 = − = , 2 2 AD A'B AB AA' 2a = = + = .  2 2 2 2AD C'D 5 cosDAC' 2AD 8 − = = . Vậy cosin góc giữa hai đường thẳng A'B và AC' bằng 5 8 0.25 Do a,b,c 0 > , đặ t a b x 0,y 0 c c = > = > khi đ ó 3 3 x y 1 + = Ta có ( ) ( ) ( ) 3 3 3 x y x y 3xy x y 1 3xy x y + = + + + = + + . 0.25 Chia t ử và m ẫ u c ủ a bi ể u th ứ c M cho 2 c 0 ≠ và thay a b x 0,y 0 c c = > = > ta đượ c ( )( ) ( ) ( ) 2 2 2 x y 2xy 1 x y 1 M 1 x 1 y x y xy 1 + − − + − = = − − − + + + 0.25 Đặt 3 t 1 t x y xy 3t − = + ⇒ = , vì x,y 0 > nên ta có 3 3 3 2 t 1 t 1 1 t 4 t 1 t 4 t 4 3t >  >   ⇔ ⇔ < ≤   − ≤ ≥    . Bi ể u th ứ c tr ở thành 3 3 2 t 3t 2 t 2 3 M 1 t 3t 3t 1 t 1 t 1 − + + = = = + − + − − − 0.25 Câu 5 ( 1.0 điểm) Vì 3 3 1 t 4 0 t 1 4 1 < ≤ ⇒ < − ≤ − suy ra 3 3 4 2 f(t) 4 1 + ≥ − . V ậ y giá tr ị nh ỏ nh ấ t c ủ a bi ể u th ứ c là 3 3 4 2 4 1 + − khi 3 a b,c a 2 = = . 0.25 Chương trình chuẩn Di ệ n tích hình vuông là 2 S = AB.AD = 2AI 25 = nên 5 2 AI 2 = . Đ i ể m ( ) I d : y x 5 I a;5 a ∈ = − + ⇒ − v ớ i a 0 > , 2 2 AI 2a 6a 9 = + + . Khi đ ó a nghi ệ m ph ươ ng trình 2 25 7 2a 6a 9 a 2 2 − + + = ⇔ = (lo ạ i), 1 a 2 = (tm điều kiện). 0.25 Câu 6a ( 1.0 điểm) Tọa độ tâm 1 9 I ; 2 2       , vi I trung điểm AC nên tọa độ đỉnh ( ) C 4;4 . 0.25 A C B A' C' B' D I H G www.MATHVN.com Trang 4 – www.mathvn.com Đường thẳng ∆ vuông góc AI có ( ) n 7; 1 ∆ = −  nên phương trình là :7x y 1 0 ∆ − + = . Vì điểm B thuộc :7x y 1 0 ∆ − + = nên ( ) B b;1 7b + . Ta có 2 2 b 1 1 9 25 BI AI b 1 7b b 0 2 2 2 =      = ⇔ − + + − = ⇔      =      0.25 • Với ( ) b 0 B 0;1 = ⇒ do I trung điểm BD nên ( ) D 1;8 ; • Với ( ) b 1 B 1;8 = ⇒ và ( ) D 0;1 . V ậ y t ọ a độ các đỉ nh B, C, D là: ( ) ( ) B 1;8 ,C 4;4 và ( ) D 0;1 ho ặ c ( ) ( ) B 0;1 ,C 4;4 và ( ) D 1;8 0.25 Đ i ề u ki ệ n n ,n 2 ∈ ≥ ℕ , Ph ươ ng trình 2 1 2 n n 2C 8C n n 10n 0 n 0 ⇔ − = ⇔ − = ⇔ = (lo ạ i), n 10 = (nh ậ n) 0.25 V ớ i n 10 = , ( ) 10 k 10 0 1 k 10 P(x) 1 6x a a x a x a x = − = + + + + + 0.25 Khi 1 x 2 = , ta có 10 1 10 0 10 1 a a P 2 a 2 2 2   = = + + +     0.25 Câu 7a ( 1.0 điểm) Ta có t ổ ng T b ằ ng giá tr ị c ủ a P(x) t ạ i 1 x 2 = . Do đ ó 10 T 2 = . 0.25 Điều kiện 3 1 4 0 x,x ,x 2 2 < ≠ ≠ .Ta thấy x 1 = không là nghiệm. 0.25 Với x 1 ≠ phương trình tương đương 2 3 x x 1 1 1 log 2x log 2x 2 + = ( ) 2 x x 1 1 1 3 log 2 2 1 log 2 ⇔ + = + + (1) 0.25 Đặt x t log 2 = , t 1;t 3 ≠ − ≠ − (1) trở thành ( ) ( ) 3 2 2 2 t 1 1 1 1 t 3t t 5 0 t 4t 5 0 vô nghiêm 3 t 2 1 t =  + = ⇒ + + − = ⇔  + + =+ +  0.25 Câu 8a ( 1.0 điểm) Với t 1 = suy ra x log 2 1 x 2 = ⇔ = (nhận). Vậy nghiệm của phương trình là: x 2 = 0.25 Chương trình Nâng cao Do tam giác ABC vuông tại A nên đường tròn ngoại tiếp tam giác có tâm trùng với trung điểm cạnh BC và bán kính bằng 1 AI BC 5 2 = = . 0.25 Gọi tọa độ tâm là ( ) 0 0 I x ;y ,do ( ) d d' u u 1; 2 = = −   nên d và d’ song song, suy ra I cách đều d và d’ Hay 0 0 0 0 0 0 0 0 x 2y 1 x 2y 21 x 2y 10 0 x 2y 10 5 5 − − − + = ⇔ − + = ⇔ = − . 0.25 Khi đó 0 y thỏa mãn ( ) ( ) 2 2 0 0 0 0 AI 5 2y 10 3 y 4 25 y 4;y 8 = ⇔ − − + − = ⇔ = = 0.25 Câu 6b ( 1.0 điểm) Với ( ) 0 y 4 I 2;4 = ⇒ − , phương trình đường tròn ngoại tiếp tam giác ABC là ( ) ( ) 2 2 x 2 y 4 25 + + − = Với ( ) 0 y 8 I 6;8 = ⇒ , phương trình đường tròn ngoại tiếp tam giác ABC là ( ) ( ) 2 2 x 6 y 8 25 − + − = 0.25 Không gian mẫu Ω có ( ) 4 20 n C 4845 Ω = = 0.25 Biến cố A=”lấy được ít nhất 2 cái bút cùng màu” thì biến cố đối A =”không có hai cái bút cùng màu” Số cách chọn 4 bút không có 2 bút cùng màu là 1 1 1 1 6 6 5 3 C .C .C C 540 = 0.25 Xác suất của biến cố A là ( ) ( ) ( ) n A 36 P A n 323 = = Ω . 0.25 Câu 7b (1 điểm) Khi đó xác suất của biến cố A là ( ) 287 P(A) 1 P A 323 = − = . 0.25 www.MATHVN.com Trang 5 – www.mathvn.com Đặt ; x x 3 x x 3 27 3 t 27 t 9t 3 27 − = ⇒ − = + ;PT trở thành ( ) ( ) ( ) 3 t 7t 6 0 t 1 t 2 t 3 0 − + = ⇔ − − + = 0.25 • t 1 = x x 3 x 3 1 13 1 13 3 1 3 x log 3 2 2 + + ⇒ − = ⇔ = ⇔ = • t 2 = x x x 3 3 2 3 3 x 1 3 ⇒ − = ⇔ = ⇔ = • t 3 = − x x 3 x 3 21 3 21 3 3 3 3 x log 3 2 2 − − ⇒ − = − ⇔ = ⇔ = 0.5 Câu 8 b ( 1.0 điểm) Vậy nghiêm của phương trình đã cho là x 1 = , 3 1 13 x log 2 + = và 3 21 3 x log 2 − = . 0.25 Hết Chú ý: Mọi cách làm đúng khác với đáp án đều cho điểm tương ứng. . Trang 1 – www.mathvn.com S Ở GIÁO DỤC ĐÀO TẠO HÀ TĨNH TRƯỜNG THPT TRẦN PHÚ KÌ THI THỨ ĐẠI HỌC LẦN THỨ 1 NĂM HỌC 2 012 -2 013 HƯỚNG DẪN CHẤM MÔN TOÁN. của hệ 1 x y 9x 18 11 y 2x 19 207 y 11  =  = +   ⇔   = − +   =   Vậy 1 207 M ; 11 11       . 0.25 Câu 1 (2.0

Ngày đăng: 07/03/2014, 16:20

HÌNH ẢNH LIÊN QUAN

- Bảng biến thiên: - KÌ THI THỨ ĐẠI HỌC LẦN THỨ 1 NĂM HỌC 2012 -2013 HƯỚNG DẪN CHẤM MÔN TOÁN ppt
Bảng bi ến thiên: (Trang 1)
= . Gọi H là hình chiếu của điểm A trên đường thẳng  A ' I . Ta có  BC ⊥ AI, BC ⊥ AÁ ⇒ BC ⊥ AH  - KÌ THI THỨ ĐẠI HỌC LẦN THỨ 1 NĂM HỌC 2012 -2013 HƯỚNG DẪN CHẤM MÔN TOÁN ppt
i H là hình chiếu của điểm A trên đường thẳng A ' I . Ta có BC ⊥ AI, BC ⊥ AÁ ⇒ BC ⊥ AH (Trang 3)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w