1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM HỌC 2012- 2013 MÔN TOÁN TRƯỜNG THPT CHUYÊN NÔNG CỐNG 2 docx

10 444 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 618,5 KB

Nội dung

www.SơnPro.com SỞ GD & ĐT THANH HOÁ ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM HỌC 2012- 2013 TRƯỜNG THPT CHUYÊN NÔNG CỐNG 2 Môn: Toán www.SơnPro.com Thời gian làm bài: 180 phút không kể thời gian giao đề Ngày thi: 08/ 12/ 2012. I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm). Câu I (2,0 điểm). Cho hàm số 2 1 1 x y x + = − (C) 1. Khảo sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Tìm các giá trị của m để hệ phương trình sau có đúng 4 nghiệm nguyên: 2 2 2 ( 2) 1 0 2 4 5 0 y x y x x y y m − − − =   − + − + − =  Câu II (2,0 điểm). 1. Giải phương trình: 2 2cos3 cos + 3(1 sin 2 ) = 2 3 cos (2 ) 4 x x x x π + + 2. Giải phương trình: + = 2x − 5x − 1 Câu III (1,0 điểm). Tìm các giá trị của tham số m để bất phương trình: 2 (2 ) ( 2 2 1) 0x x m x x− + − + + ≤ nghiệm đúng với mọi x thuộc đoạn 0; 1 3   +   . Câu IV (1,0 điểm). Trên mp (P) cho đường tròn (T) đường kính AB bằng 2R. S là một điểm nằm trên đường thẳng vuông góc với (P) tại A. Đặt SA = h. Mặt phẳng (Q) đi qua A và vuông góc với SB cắt SB tại K. C là một điểm nằm trên đường tròn (T) sao cho · ,(0 ) 2 BAC π α α = < < . SC cắt mp (Q) tại H. Tính thể tích tứ diện SAHK theo h, R và α . Câu V (1,0 điểm). Cho các số dương , ,x y z thoả mãn 3x y z+ + = . T?m giá trị nhỏ nhất của biểu thức 2 2 2 2 2 2 x y z P x y y z z x = + + + + + II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được chọn một trong hai phần( Phần A hoặc Phần B) A.Theo chương tr?nh chuẩn. Câu VIa (2,0 điểm). 1. Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có phương trình đường cao AH và trung tuyến AM lần lượt là: 2 13 0x y − − = và 13 6 9 0x y − − = . Biết tâm đường tròn ngoại tiếp tam giác ABC là I(-5; 1). Tìm toạ độ các đỉnh A, B, C. 2. Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): 2 2 ( 4) 25x y − + = và M(1; - 1). Viết phương trình đường thẳng d đi qua M cắt (C) tại hai điểm A, B sao cho MA = 3MB. Câu VIIa (1,0 điểm). Cho A = {0; 1; 2; 3; 4; 5}, từ các chữ số thuộc tập A lập được bao nhiêu số tự nhiên có 5 chữ số và số đó chia hết cho 3 . B.Theo chương trình nâng cao. Câu VIb (2,0 điểm). 1. Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có M là trung điểm của BC, đỉnh A thuộc đường thẳng d: 2 0x y + + = , phương trình đường thẳng DM: 3 6 0x y− − = và đỉnh C(3; - 3). Tìm toạ độ các đỉnh A, B, D biết D có hoành độ âm. www.SơnPro.com www.SơnPro.com 2. Trong mặt phẳng toạ độ Oxy, cho Elip (E) có phương trình chính tắc là: 2 2 1 16 9 x y + = và hai điểm A(4;-3), B(- 4; 3). Tìm toạ độ điểm C thuộc (E) sao cho diện tích tam giác ABC đạt giá trị lớn nhất. Câu VIIb (1,0 điểm). Tính tổng 0 11 1 10 10 1 11 0 20 12 20 12 20 12 20 12 S C C C C C C C C = + + + + . …………….Hết………… ( Đề thi gồm có 01 trang) SỞ GD & ĐT THANH HOÁ ĐÁP ÁN ĐỀ THI ĐẠI HỌC LẦN I NĂM HỌC 2012- 2013 TRƯỜNG THPT CHUYÊN NÔNG CỐNG 2 Môn: Toán Thời gian làm bài: 180 phút không kể thời gian giao đề Ngày thi: 08/ 12/ 2012. Câu ? Đáp án Điểm I 1 Khảo sự biến thiên và vẽ đồ thị (C) của hàm số 1,0 Tập xác định D = R\{1} Sự biến thiên: -Chiều biến thiên: 2 3 ' 0, ( 1) y x D x − = < ∀ ∈ − . Hàm số nghịch biến trên các khoảng (- ∞; 1) và ( 1 ; + ∞). - Cực trị: Hàm số không có cực trị. 0.25 - Giới hạn tại vô cực, giới hạn vô cực và tiệm cận: 2 1 2 1 lim 2 ; lim 2 1 1 x x x x x x →−∞ →+∞ + + = = − − . Đường thẳng y = 2 là tiệm cận ngang. 1 1 2 1 2 1 lim ; lim 1 1 x x x x x x − + → → + + = ∞ = +∞ − − . Đường thẳng x = 1 là tiệm cận đứng. 0,25 -Bảng biến thiên: x -∞ 1 +∞ y’ - - y 2 +∞ - ∞ 2 0,25 Đồ thị: - Đồ thị hàm số có tâm đối xứng là giao điểm hai tiệm cận I( 1; 2). 0,25 www.SơnPro.com y www.SơnPro.com 2 T?m các giá trị của m để hệ phương trình sau có đúng 4 nghiệm nguyên 2 2 2 ( 2) 1 0 (1) 2 4 5 0 (2) y x y x x y y m − − − =   − + − + − =  1,0 Nhận thấy x = 1 không thỏa mãn phương trình (1) dù y lấy bất kì giá trị nào Suy ra (1) 2 1 ( 1) 2 1 1 x x y x y x + ⇔ − = + ⇔ = − Phương trình (2) 2 2 2 ( 1) ( 2)x y m⇔ − + − = là phương trình đường tròn (T) có tâm I(1;2) bán kính m với mọi m khác 0 Vậy hệ phương trình đã cho có đúng 4 nghiệm nguyên khi và chỉ khi đồ thị (C) ở câu 1 và đường tròn (T) cắt nhau tại 4 điểm phân biệt có tọa độ nguyên 0,25 4 2 -2 -4 -6 -8 -10 -12 -15 -10 -5 5 10 15 1 -1 5 4 1 3 -2 I y x o D C B A Đồ thị (C) chỉ đi qua đúng 4 điểm có tọa độ nguyên là A(1;5), B(4; 3), C(0,-1)và D(-2; 1) Từng cặp AvaC, B và D đối xứng nhau qua I(1;2) 0,5 Hệ đã cho có đúng 4 nghiệm nguyên khi và chỉ khi đường tròn (T) phải đi qua 4 điểm A, B, C, D khi và chỉ khi (T) đi qua A khi và chỉ khi 2 2 10 10R m m= = ⇔ = 0,25 www.SơnPro.com O 1 2 x I www.SơnPro.com II 1 . Giải phương trình: 2 2cos3 cos + 3(1 sin 2 ) = 2 3 cos (2 ) 4 x x x x π + + 1,0 2 2cos3 cos + 3(1 sin 2 ) = 2 3cos (2 ) 4 2cos3 cos 3 3sin 2 3 1 cos(4 ) 2 2cos3 cos 3 3sin 2 3 3 sin 4 2cos3 cos 3(sin 4 sin 2 ) 0 2cos3 cos 2 3 sin 3 cos 0 2cos (cos3 3 sin3 ) 0 cos 0 x x x x x x x x x x x x x x x x x x x x x x x x π π + +   ⇔ + + = + +     ⇔ + + = − ⇔ + + = ⇔ + = ⇔ + = = ⇔ cos 0 2 ( ) 3 cos3 3 sin3 0 tan3 3 18 3 x x k k Z x x x x k π π π π  =  = +    ⇔ ⇔ ∈   −  + = =   = − +     Vậy nghiệm của phương trình là ; ( ) 2 18 3 x k x k k Z π π π π = + = − + ∈ 0,5 0,5 2 Giải phương trình: + = 2x − 5x − 1 (1) 1,0 2 (1) 2 1 4 1 2 5 3x x x x ⇔ − − + − − = − − 3 3 1 1 ( 3)(2 1) ( 3)( 2 1) 0 2 1 4 1 2 1 4 1 3 0 1 1 2 1(2) 2 1 4 1 x x x x x x x x x x x x x x − − + = − + ⇔ − − − − = − + − + − + − + − =   ⇔  − = +  − + − +  0,5 * 3 0 3x x − = ⇔ = *Xét phương trình (2) ĐK 2 4x ≤ ≤ VP 5 ≥ VT đạt giá trị lớn nhất trên đoạn [2;4] bằng 1 1 2 1 − + khi x = 2 nên phương trình (2) vô nghiệm Vậy phương trình có nghiệm duy nhất x = 3 0,25 0,25 III Tìm các giá trị của tham số m để bất phương trình: 2 (2 ) ( 2 2 1) 0x x m x x− + − + + ≤ 1.0 Đặt 2 2 2t x x = − + . Lập BBT của hàm 2 2 2y x x= − + với x thuôc 0;1 3   +   ta có t thuộc đoạn [ ] 1;2 0,25 Bpt trở thành 2 2 2 ( 1) 2 (1) 1 t m t t m t − + ≤ − ⇔ ≤ + (do t+1>0) Bpt đã cho nghiệm đúng với mọi x thuôc 0;1 3   +   khi và chỉ Bpt (1) nghiệm đúng 0,25 www.SơnPro.com www.SơnPro.com với moi t thuộc đoạn [ ] 1;2 Xét [ ] 2 2 ( ) , 1;2 1 t f t t t − = ∈ + 2 1 '( ) 1 0, ( 1) f t t t = + > ∀ + t 1 2 f’(t) + f(t) 2 3 1 2 − 0,25 Từ BBT ta có Bpt (1) nghiệm đúng với moi t thuộc đoạn [ ] 1;2 khi 1 2 m − ≤ Vậy với 1 2 m − ≤ thoả mãn yêu cầu bài toán. 0,25 IV Trên mp (P) cho đường tròn (T) đường kính AB bằng 2R. S là một điểm nằm trên đường thẳng vuông góc với (P) tại A. Đặt SA = h. Mặt phẳng (Q) đi qua A và vuông góc với SB cắt SB tại K. C là một điểm nằm trên đường tròn (T) sao cho · ,(0 ) 2 BAC π α α = < < . SC cắt mp (Q) tại H. Tính thể tích tứ diện SAHK theo h, R và α . 1.0 O α H K C B S A www.SơnPro.com www.SơnPro.com Chứng minh AH ⊥ SC. Ta có: ( ) BC AC BC SAC BC AH BC SA ⊥  ⇒ ⊥ ⇒ ⊥  ⊥  (1) Lại có: ( )mp Q SB SB AH ⊥ ⇒ ⊥ (2) Từ (1) và (2) suy ra ( )AH SBC AH SC ⊥ ⇒ ⊥ Suy ra 2 . .SA SH SC SK SB = = 4 2 2 2 2 . . . . . . . . . SAHK SABC V SA SH SK SH SK SH SC SK SB SA V SA SC SB SC SB SC SB SC SB = = = = 0,25 0,25 2 2 2 2 2 2 2 2 2 1 1 sin 2 . sin os . 3 6 3 4 os , 4 SABC R h V dt ABC SH AB c SA SC h R c SB h R α α α α = ∆ = = = + = + 0,25 2 5 2 2 2 2 2 sin 2 3( 4 )( 4 os ) SAHK R h V h R h R c α α = + + 0,25 V Tìm giá trị nhỏ nhất của biểu thức 2 2 2 2 2 2 x y z P x y y z z x = + + + + + 1,0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ( ) ( ) ( ) ( ) x y z xy yz zx P x y z x y y z z x x y y z z x xy yz zx P x y z x y y z z x = + + = − + − + − + + + + + + ⇒ = + + − + + + + + 0,25 Ta có 2 2 2 2 2 2 2 2 2 2 2 2 2 ; 2 2 2 2 ( ) ( ) 2 2 2 xy xy y x x y y x x y y x z y yz yz zx zx x z y z z x z y x z z y y x x z P x y z + ≥ ⇒ ≤ = + ≤ = ≤ = + + ⇒ ≥ + + − + + 0,25 Mặt khác 0,25 www.SơnPro.com www.SơnPro.com 1 1 1 ; ; 2 2 2 2 2 2 4 3 1 9 1 ( ) ( ) ( ) 4 4 4 4 x xy y y yz z z xz x y x y z y z x z x x y z xy yz xz P x y z P x y z xy yz zx xy yz zx + + + + + + ≤ = ≤ = ≤ = + + + + + ⇒ ≥ + + − ⇒ ≥ + + − + + = − + + 2 2 2 2 ( ) 2( ) 3( ) 9 1 3 3 .3 4 4 2 x y z x y z xy yz zx xy yz zx xy yz zx P + + = + + + + + ≥ + + ⇒ + + ≤ ⇒ ≥ − = Dấu = xảy ra khi 2 2 2 ; ; 1 1; 1; 1 1 1 3 x y y z z x x x y z y x y x z x y z  = = = =   = = =   ⇔ =   = =   =   + + =  Vậy GTNN của P là 3/2 khi x = y = z =1. 0,25 VIa 1 1.0 Toạ độ điểm A là nghiệm của hệ 2 13 0 3 ( 3; 8) 13 6 9 0 8 x y x A x y y − − = = −   ⇔ ⇒ − −   − − = = −   0,25 Ta có IM đi qua I(-5; 1) và song song với AH .Phương trình IM là 2 7 0x y − + = Toạ độ điểm M là nghiệm của hệ 2 7 0 3 (3;5) 13 6 9 0 5 x y x M x y y − + = =   ⇒ ⇒   − − = =   0,25 Đường thẳng BC qua M và vuông góc với AH. Phương trình BC là 2 11 0x y + − = Gọi B(b;11-2b). Ta có IB = IA 2 2 2 2 ( 5) (10 2 ) 85 6 8 0 4 b b b b b b =  ⇒ + + − = ⇔ − + = ⇔  =  0,25 Với b = 2 suy ra B(2;7), C(4;3) Với b = 4 suy ra B(4;3), C(2,7) Vậy A( -3; -8), B(2;7), C(4;3) hoặc A( -3; -8), B(4;3), C(2;7) 0,25 2 1,0 www.SơnPro.com A B C H M I www.SơnPro.com Đường tròn (C ) có tâm I(4;0), bán kính R=5. Do IM <5 nên M nằm trong đường tròn (C) Gọi H là hình chiếu của I trên AB, H là trung điểm của AB. Do MA= 3MB nên M là trung điểm của HB Xét hai tam giác vuông IHM và IHB ta có 2 2 2 2 2 2 2 2 2 2 10 5 4 25 5 IH HM IM IH HM HM IH HB IB IH HM IH    + = + = =    ⇔ ⇔    + = + =   =     0,5 Đường thẳng (d) đi qua M(1; - 1) có phương trình 2 2 ( 1) ( 1) 0 ( 0)a x b y a b − + + = + ≠ 2 2 2 2 2 3 ( , ) 5 2 3 2 0 (2 )( 2 ) 0 2 a b a b d I d a ab b a b a b a b a b = +  ⇒ = = ⇔ + − = ⇔ − + = ⇔  = − +  Với 2b a = chon 1; 2a b = = . Phương trình (d): x + 2y +1 = 0 Với 2a b = − chon 1; 2b a = − = . Phương trình (d): 2x - y -3 = 0 Vậy phương trình đường thẳng (d) là x + 2y +1 = 0 hoặc 2x - y -3 = 0 0,5 VIIa 1,0 Gọi số có 5 chữ số là ( 0)abcde a ≠ . Do 3abcde M nên ( ) 3a b c d e + + + + M Nếu 3a b c d+ + + M th? e = 0 hoặc e = 3 Nếu a b c d + + + chia 3 dư 1 thì e = 2 hoặc e = 5 Nếu a b c d + + + chia 3 dư 2 thì e = 1 hoặc e = 4 Như vậy từ một số có 4 chữ sô abcd (các chữ số được lấy từ tập A) sẽ tạo được 2 số tự nhiên có 5 chữ số thoả mãn yêu cầu bài toán Từ các chữ số của tập A lập được: 5.6.6.6 = 1080 số tự nhiên có 4 chữ số Nên từ các chữ số của tập A lập được: 2.1080 = 2160 sô chia hết cho 3 có 5 chữ số VII b 1 1,0 Do A thuộc d: 2 0x y + + = , gọi A ( ; 2)a a − − . Ta có www.SơnPro.com I A B H M A D C M B I www.SơnPro.com 3 4 2.6 2 ( , ) 2 ( , ) 3 10 10 ADM CDM a a S S d A DM d C DM a ∆ ∆ =  = ⇒ = ⇒ = ⇒  = −  Với 3 (3; 5)a A = ⇒ − , trường hợp này không thoả mãn v? A, C nằm cùng phía với đường thẳng DM. Với 3 ( 3;1)a A= − ⇒ − . Gọi I là tâm của hình chữ nhật, I là trung điểm của AC suy ra I(0;-1) 0,5 Điểm D thuộc DM: 3 6 0x y− − = , gọi D(3d+6;d) (d < -2) 2 2 3 (3 6) ( 1) 13 3 4 5 d ID IA d d d d = −   = ⇔ + + + = ⇔ ⇒ = −  = −  Suy ra D(-3;-3), B(3;1) Vậy A(-3;1), D(-3;-3), B(3;1) 0,5 2 1,0 Gọi 0 ( ; ) o C x y ta có 2 2 2 2 0 0 0 1 9 16 144 (1) 16 9 o x y x y + = ⇔ + = Phương trình AB là: 3x +4y = 0 0,25 0 0 3 4 1 ( , ) , . ( , ) 5 2 ABC x y d C AB S AB d C AB ∆ + = = Do AB không đổi nên diện tích tam giác ABC lớn nhất khi d(C,AB) lớn nhất 0,25 Áp dụng BĐT Bunhiacopxki cho hai bộ số ta có 2 2 2 0 0 0 0 0 (3 4 ) 2(9 16 ) 2.144 12 2 3 4 12 2 ( , ) 5 o x y x y x y d C AB + ≤ + = ⇒ + ≤ ⇒ ≤ (Dấu = xảy ra khi 0 0 3 4x y = ) Vậy diện tích tam giác ABC lớn nhất khi và chỉ khi 0 0 3 4x y = 0,25 Kết hợp với (1) ta có 0 0 2 2 0 0 0 0 0 0 3 2 2; 9 16 144 2 3 3 4 2 2; 2 x y x y x y x y  = =   + =   ⇔  =    = − = −   Vậy toạ độ điểm C là 3 2 (2 2; ) 2 hoặc 3 2 ( 2 2; ) 2 − − 0,25 VII b Tính tổng 0 11 1 10 10 1 11 0 20 12 20 12 20 12 20 12 S C C C C C C C C = + + + + . 1,0 Ta có 32 20 12 (1 ) (1 ) .( 1) (1)x x x + = + + 32 0 1 2 2 32 32 32 32 32 32 (1 ) VT x C C x C x C x = + = + + + + Hệ số của 11 x trong khai triển vế trái là 11 32 C (2) 0 1 2 2 20 20 0 1 2 2 12 12 20 20 20 20 12 12 12 12 ( )( )VP C C x C x C x C C x C x C x = + + + + + + + + Hệ số của 11 x trong khai triển vế phải là 0 11 1 10 10 1 11 0 20 12 20 12 20 12 20 12 C C C C C C C C + + + + (3) Từ (1),(2),(3) ta có 0 11 1 10 10 1 11 0 11 20 12 20 12 20 12 20 12 32 S C C C C C C C C C = + + + + = 0,25 0,25 0,25 0,25 www.SơnPro.com www.SơnPro.com Chú ?: Đối với ? 2 câu 1 thí sinh có thể giải không sử dụng đồ thị mà viết phương trình (1) tương đương với 2 1 3 2 1 1 x y x x + = = + − − (sau khi nhận xét x = 1 không thỏa mãn phương trình với mọi y) Nhận xét y nguyên khi x nguyên thì 3 1x − phải nguyên. Suy ra x – 1 phải là ước của 3 hay { 2;0;2;4}x ∈ − thay vào tìm y tương ứng Thay 4 cặp (x; y) nguyên vào phương trình (2) tìm được m 2 = 10. www.SơnPro.com . HOÁ ĐỀ THI THỬ Đ I HỌC LẦN I NĂM HỌC 20 12- 20 13 TRƯỜNG THPT CHUYÊN NÔNG CỐNG 2 Môn: Toán www.SơnPro.com Th i gian làm b i: 180 phút không kể th i gian. ( Đề thi gồm có 01 trang) SỞ GD & ĐT THANH HOÁ ĐÁP ÁN ĐỀ THI Đ I HỌC LẦN I NĂM HỌC 20 12- 20 13 TRƯỜNG THPT CHUYÊN NÔNG CỐNG 2 Môn: Toán Th i gian

Ngày đăng: 20/02/2014, 06:20

HÌNH ẢNH LIÊN QUAN

-Bảng biến thiên: - Tài liệu ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM HỌC 2012- 2013 MÔN TOÁN TRƯỜNG THPT CHUYÊN NÔNG CỐNG 2 docx
Bảng bi ến thiên: (Trang 2)
Gọi H là hình chiếu củ aI trên AB, H là trung điểm của AB. Do MA= 3MB nên M là trung điểm của HB - Tài liệu ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM HỌC 2012- 2013 MÔN TOÁN TRƯỜNG THPT CHUYÊN NÔNG CỐNG 2 docx
i H là hình chiếu củ aI trên AB, H là trung điểm của AB. Do MA= 3MB nên M là trung điểm của HB (Trang 8)
Vớ ia =− ⇒ −3 A( 3;1 ). Gọi I là tâm của hình chữ nhật, I là trung điểm của AC suy ra I(0;-1) - Tài liệu ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM HỌC 2012- 2013 MÔN TOÁN TRƯỜNG THPT CHUYÊN NÔNG CỐNG 2 docx
ia =− ⇒ −3 A( 3;1 ). Gọi I là tâm của hình chữ nhật, I là trung điểm của AC suy ra I(0;-1) (Trang 9)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w