1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Đề thi thử đại học khối A Môn: Toán doc

6 575 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 233,5 KB

Nội dung

Đề thi thử đại học khối A Môn: Toán Thời gian: 180 phút I.Phần chung cho tất cả thí sinh (7 điểm) Câu I (2 điểm). Cho hàm số 2 12 + + = x x y có đồ thị là (C) 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số 2.Chứng minh đường thẳng d: y = -x + m luôn luôn cắt đồ thị (C) tại hai điểm phân biệt A, B. Tìm m để đoạn AB có độ dài nhỏ nhất. Câu II (2 điểm) 1.Giải phương trình 9sinx + 6cosx – 3sin2x + cos2x = 8 2.Giải bất phương trình )3(log53loglog 2 4 2 2 2 2 −>−− xxx Câu III (1 điểm). Tìm nguyên hàm ∫ = xx dx I 53 cos.sin Câu IV (1 điểm). Cho lăng trụ tam giác ABC.A 1 B 1 C 1 có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt phẳng đáy bằng 30 0 . Hình chiếu H của điểm A trên mặt phẳng (A 1 B 1 C 1 ) thuộc đường thẳng B 1 C 1 . Tính khoảng cách giữa hai đường thẳng AA 1 và B 1 C 1 theo a. Câu V (1 điểm). Cho a, b, c 0 ≥ và 2 2 2 3a b c+ + = . Tìm giá trị nhỏ nhất của biểu thức 3 3 3 2 2 2 1 1 1 a b c P b c a = + + + + + II.Phần riêng (3 điểm) 1.Theo chương trình chuẩn Câu VIa (2 điểm). 1.Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C) có phương trình (x-1) 2 + (y+2) 2 = 9 và đường thẳng d: x + y + m = 0. Tìm m để trên đường thẳng d có duy nhất một điểm A mà từ đó kẻ được hai tiếp tuyến AB, AC tới đường tròn (C) (B, C là hai tiếp điểm) sao cho tam giác ABC vuông. 2.Trong không gian với hệ tọa độ Oxyz cho điểm A(10; 2; -1) và đường thẳng d có phương trình      += = += tz ty tx 31 21 . Lập phương trình mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất. Câu VIIa (1 điểm). Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ. 2.Theo chương trình nâng cao (3 điểm) Câu VIb (2 điểm) 1.Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C): x 2 + y 2 - 2x + 4y - 4 = 0 và đường thẳng d có phương trình x + y + m = 0. Tìm m để trên đường thẳng d có duy nhất một điểm A mà từ đó kẻ được hai tiếp tuyến AB, AC tới đường tròn (C) (B, C là hai tiếp điểm) sao cho tam giác ABC vuông. 2.Trong không gian với hệ tọa độ Oxyz cho điểm A(10; 2; -1) và đường thẳng d có phương trình 3 1 12 1 − == − zyx . Lập phương trình mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất. Câu VIIb (1 điểm) Có bao nhiêu số tự nhiên có 5 chữ số khác nhau mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và ba chữ số lẻ. 1 -Hết- ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC LẦN 1 KHỐI A – MÔN TOÁN I.Phần dành cho tất cả các thí sính Câu Đáp án Điể m I (2 điểm) 1. (1,25 điểm) a.TXĐ: D = R\{-2} b.Chiều biến thiên +Giới hạn: +∞=−∞=== −+ −→−→ +∞→−∞→ 22 lim;lim;2limlim xx xx yyyy Suy ra đồ thị hàm số có một tiệm cận đứng là x = -2 và một tiệm cận ngang là y = 2 0,5 + Dx x y ∈∀> + = 0 )2( 3 ' 2 Suy ra hàm số đồng biến trên mỗi khoảng )2;( −−∞ và );2( +∞− 0,25 +Bảng biến thiên x ∞− -2 ∞+ y’ + + ∞+ 2 y 2 ∞− 0,25 c.Đồ thị: Đồ thị cắt các trục Oy tại điểm (0; 2 1 ) và cắt trục Ox tại điểm( 2 1 − ;0) Đồ thị nhận điểm (-2;2) làm tâm đối xứng 0,25 2. (0,75 điểm) Hoành độ giao điểm của đồ thị (C ) và đường thẳng d là nghiệm của phương 0,25 2 x y O 2 -2 trình    =−+−+ −≠ ⇔+−= + + )1(021)4( 2 2 12 2 mxmx x mx x x Do (1) có mmmvam ∀≠−=−+−−+−>+=∆ 0321)2).(4()2(01 22 nên đường thẳng d luôn luôn cắt đồ thị (C ) tại hai điểm phân biệt A, B Ta có y A = m – x A ; y B = m – x B nên AB 2 = (x A – x B ) 2 + (y A – y B ) 2 = 2(m 2 + 12) suy ra AB ngắn nhất  AB 2 nhỏ nhất  m = 0. Khi đó 24 = AB 0,5 II (2 điểm) 1. (1 điểm) Phương trình đã cho tương đương với 9sinx + 6cosx – 6sinx.cosx + 1 – 2sin 2 x = 8  6cosx(1 – sinx) – (2sin 2 x – 9sinx + 7) = 0  6cosx(1 – sinx) – (sinx – 1)(2sinx – 7) = 0 0,5  (1-sinx)(6cosx + 2sinx – 7) = 0     =−+ =− )(07sin2cos6 0sin1 VNxx x 0,25  π π 2 2 kx += 0,25 2. (1 điểm) ĐK:    ≥−− > 03loglog 0 2 2 2 2 xx x Bất phương trình đã cho tương đương với )1()3(log53loglog 2 2 2 2 2 −>−− xxx đặt t = log 2 x, BPT (1)  )3(5)1)(3()3(532 2 −>+−⇔−>−− tttttt 0,5    << −≤ ⇔    << −≤ ⇔         −>−+ > −≤ ⇔ 4log3 1log 43 1 )3(5)3)(1( 3 1 2 2 2 x x t t ttt t t 0,25     << ≤< ⇔ 168 2 1 0 x x Vậy BPT đã cho có tập nghiệm là: )16;8(] 2 1 ;0( ∪ 3 III 1 điểm ∫ ∫ == xx dx xxx dx I 23233 cos.2sin 8 cos.cos.sin đặt tanx = t dt t t t t dt I t t x x dx dt ∫ ∫ + = + =⇒ + ==⇒ 3 32 3 2 22 )1( ) 1 2 ( 8 1 2 2sin; cos 0,5 C x xxxdtt t tt dt t ttt +−++=+++= +++ = ∫ ∫ − 2 2433 3 246 tan2 1 tanln3tan 2 3 tan 4 1 ) 3 3( 133 0,5 Câu IV 1 điểm Do )( 111 CBAAH ⊥ nên góc HAA 1 ∠ là góc giữa AA 1 và (A 1 B 1 C 1 ), theo giả thiết thì góc HAA 1 ∠ bằng 30 0 . Xét tam giác vuông AHA 1 có AA 1 = a, góc HAA 1 ∠ =30 0 2 3 1 a HA =⇒ . Do tam giác A 1 B 1 C 1 là tam giác đều cạnh a, H thuộc B 1 C 1 và 2 3 1 a HA = nên A 1 H vuông góc với B 1 C 1 . Mặt khác 11 CBAH ⊥ nên )( 111 HAACB ⊥ 0,5 Kẻ đường cao HK của tam giác AA 1 H thì HK chính là khoảng cách giữa AA 1 và B 1 C 1 0,25 Ta có AA 1 .HK = A 1 H.AH 4 3 . 1 1 a AA AHHA HK ==⇒ 0,25 4 A 1 A B C C 1 B 1 K H Cõu V 1 im Ta cú: P + 3 = 2 2 3 2 2 3 2 2 3 111 a a c c c b b b a + + ++ + ++ + 24 1 1212 24 6 2 2 2 2 3 b b a b a P + + + + + =+ 24 1 1212 2 2 2 2 3 c c b c b + + + + + + 24 1 1212 2 2 2 2 3 a a c a c + + + + + + 3 6 3 6 3 6 216 3 216 3 216 3 cba ++ 6 222 3 82 9 )( 222 3 22 3 =+++ cbaP 2 3 22 3 22 9 22 3 22 9 6 3 == P P Min khi a = b = c = 1 0,5 0,5 Phần riêng. 1.Ban cơ bản Câu VIa 2 điể m 1.( 1 điểm) Từ phơng trình chính tắc của đờng tròn ta có tâm I(1;-2), R = 3, từ A kẻ đợc 2 tiếp tuyến AB, AC tới đờng tròn và ACAB => tứ giác ABIC là hình vuông cạnh bằng 3 23 = IA 0,5 = = == 7 5 6123 2 1 m m m m 0,5 2. (1 im) Gi H l hỡnh chiu ca A trờn d, mt phng (P) i qua A v (P)//d, khi ú khong cỏch gia d v (P) l khong cỏch t H n (P). Gi s im I l hỡnh chiu ca H lờn (P), ta cú HIAH => HI ln nht khi IA Vy (P) cn tỡm l mt phng i qua A v nhn AH lm vộc t phỏp tuyn. 0,5 )31;;21( tttHdH ++ vỡ H l hỡnh chiu ca A trờn d nờn )3;1;2((0. == uuAHdAH l vộc t ch phng ca d) )5;1;7()4;1;3( AHH Vy (P): 7(x 10) + (y 2) 5(z + 1) = 0 7x + y -5z -77 = 0 0,5 Cõu VIIa 1 im T gi thit bi toỏn ta thy cú 6 2 4 = C cỏch chn 2 ch s chn (vỡ khụng cú s 0)v 10 2 5 = C cỏch chn 2 ch s l => cú 2 5 C . 2 5 C = 60 b 4 s tha món bi toỏn 0,5 Mi b 4 s nh th cú 4! s c thnh lp. Vy cú tt c 2 4 C . 2 5 C .4! = 1440 s 0,5 2.Ban nâng cao. Câu 1.( 1 điểm) 5 VIa 2 điể m Từ phơng trình chính tắc của đờng tròn ta có tâm I(1;-2), R = 3, từ A kẻ đợc 2 tiếp tuyến AB, AC tới đờng tròn và ACAB => tứ giác ABIC là hình vuông cạnh bằng 3 23 = IA 0,5 = = == 7 5 6123 2 1 m m m m 0,5 2. (1 im) Gi H l hỡnh chiu ca A trờn d, mt phng (P) i qua A v (P)//d, khi ú khong cỏch gia d v (P) l khong cỏch t H n (P). Gi s im I l hỡnh chiu ca H lờn (P), ta cú HIAH => HI ln nht khi IA Vy (P) cn tỡm l mt phng i qua A v nhn AH lm vộc t phỏp tuyn. 0,5 )31;;21( tttHdH ++ vỡ H l hỡnh chiu ca A trờn d nờn )3;1;2((0. == uuAHdAH l vộc t ch phng ca d) )5;1;7()4;1;3( AHH Vy (P): 7(x 10) + (y 2) 5(z + 1) = 0 7x + y -5z -77 = 0 0,5 Cõu VIIa 1 im T gi thit bi toỏn ta thy cú 10 2 5 = C cỏch chn 2 ch s chn (k c s cú ch s 0 ng u) v 3 5 C =10 cỏch chn 2 ch s l => cú 2 5 C . 3 5 C = 100 b 5 s c chn. 0,5 Mi b 5 s nh th cú 5! s c thnh lp => cú tt c 2 5 C . 3 5 C .5! = 12000 s. Mt khỏc s cỏc s c lp nh trờn m cú ch s 0 ng u l 960!4 3 5 1 4 = CC . Vy cú tt c 12000 960 = 11040 s tha món bi toỏn 0,5 6 . thì góc HAA 1 ∠ bằng 30 0 . Xét tam giác vuông AHA 1 có AA 1 = a, góc HAA 1 ∠ =30 0 2 3 1 a HA =⇒ . Do tam giác A 1 B 1 C 1 là tam giác đều cạnh a, H thuộc. khoảng cách gi a AA 1 và B 1 C 1 0,25 Ta có AA 1 .HK = A 1 H.AH 4 3 . 1 1 a AA AHHA HK ==⇒ 0,25 4 A 1 A B C C 1 B 1 K H Cõu V 1 im Ta cú: P + 3 = 2 2

Ngày đăng: 23/12/2013, 04:17

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w