Sáng kiến kinh nghiệm môn Toán 9 dạy học áp dụng ở trường THCS , giúp giáo viên tham khảo chuyên môn nhằm nâng cao kiến thức, kĩ năng nghiệp vụ chuyên môn bộ môn, đồng thời tăng cường đổi mới phương pháp, kĩ thuật dạy học, để áp dụng vào dạy học môn ở trường trung học cơ nhằm đạt kết quả cao nơi mà giáo viên đang công tác giảng dạy. Sáng kiến này giúp cho giáo viên tham khảo, có nhiều kĩ năng và kinh nghiệm trong giảng dạy môn học, nâng cao chất lượng giảng dạy.
Tên sáng kiến: “Rèn luyện khả tìm lời giải tốn hình học cho học sinh khá, giỏi lớp 9” CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự - Hạnh phúc ĐƠN ĐỀ NGHỊ XÉT, CƠNG NHẬN SÁNG KIẾN Năm: 20… Kính gửi: Hội đồng khoa học cấp Huyện Họ tên: ………………… Chức vụ, đơn vị công tác: Giáo viên trường THCS…………… Tên sáng kiến: “Rèn luyện khả tìm lời giải tốn hình học cho học sinh khá, giỏi lớp 9” Lĩnh vực áp dụng sáng kiến: Dạy học môn Tốn Tóm tắt trình trạng giải pháp biết: (Ưu, hạn chế giải pháp đã, áp dụng, bất cập, hạn chế cần có giải pháp khắc phục ) a) Ưu điểm: Trong thực tế giảng dạy việc bồi dưỡng học sinh giỏi môn toán, với cách làm mang lại hiệu cao việc rèn luyện lực sáng tạo toán cho học sinh Các em học sinh thực có hứng thú học tốn bồi dưỡng cho học sinh giỏi, tự độc lập tìm tịi nhiều cách giải khác mà không cần gợi ý giáo viên b) Tồn tại: Một số em cần gợi ý trường hợp chưa quen với việc tự sáng tạo tập Tóm tắt nội dung giải pháp đề nghị cơng nhận sáng kiến: - Tính mới, tính sáng tạo: Rèn luyện cho học sinh khả tự học, tự sáng tạo, tự tìm nhiều cách giải hoạt động giải tập khó, nâng cao dành cho học sinh giỏi - Khả áp dụng, nhân rộng: Sáng kiến áp dụng tất trường THCS dạy học mơn Tốn - Hiệu quả, lợi ích thu áp dụng giải pháp (hiệu kinh tế, xã hội) Nâng cao chất lượng bồi dưỡng học sinh giỏi kết thi HSG huyện thành phố CƠ QUAN ĐƠN VỊ ÁP DỤNG SÁNG KIẾN (Ký tên, đóng dấu) ……………., ngày tháng năm Người viết đơn UBND HUYỆN TRƯỜNG THCS BẢN MÔ TẢ SÁNG KIẾN “Rèn luyện khả tìm lời giải tốn hình học cho học sinh khá, giỏi lớp 9” Tác giả: Trình độ chun mơn: Đại học tốn Chức vụ: Giáo viên Nơi công tác: Trường THCS Ngày 20 tháng năm 20 BẢN MÔ TẢ SÁNG KIẾN THÔNG TIN CHUNG VỀ SÁNG KIẾN Tên sáng kiến: “Rèn luyện khả tìm lời giải tốn hình học cho học sinh khá, giỏi lớp 9” Lĩnh vực áp dụng sáng kiến: Dạy học mơn Tốn Tác giả: Họ tên: ………………………… Ngày/tháng/năm sinh: Chức vụ, đơn vị công tác: Giáo viên trường THCS …………… Điện thoại: DĐ: ………… Cố định: Tác giả tự làm 100% Đồng tác giả (nếu có): Đơn vị áp dụng sáng kiến: Tên đơn vị: Trường THCS……………………………………………… Địa chỉ: ………………………………………………………………… Điện thoại: I Mô tả giải pháp biết: (Mô tả giải pháp biết; ưu điểm, hạn chế giải pháp đã, áp dụng quan đơn vị) Tên giải pháp biết: “Bồi dưỡng học sinh giỏi hình học trường THCS” Ưu điểm: Học sinh thầy cô giảng giải tận tình cẩn thận bài, học sinh hiểu thầy cô giảng Hạn chế: Kiến thức truyền thụ từ người giáo viên phía, khơng phát huy khả tự học sáng tạo học sinh Các em thụ động việc tiếp thu kiến thức, không khai thác nhiều cách giải toán Khi thi gặp tập dạng em cách khai phá lời giải kết thi chưa cao II Nội dung giải pháp đề nghị công nhận sáng kiến II.0 Nội dung giải pháp mà tác giả đề xuất Giải pháp thực hiện: - Hình thành tình có vấn đề liên quan đến cách giải cho toán - Hướng dẫn học sinh đưa cách giải cho tốn, từ hướng dẫn học sinh tìm lời giải ngắn phù hợp học sinh - Tăng cường hoạt động tìm tịi, quan sát,đo đạc, dự đốn tiếp cận lời giải - Nắm vững kiến thức bản, huy động, vận dụng kiến thức vào giải vấn đề có liên quan Kiến thức cần truyền đạt: Xuất phát từ điều mong muốn rèn luyện khả sáng tạo, tìm nhiều cách giải thân người thầy, người dạy phải người tìm nhiều cách giải hướng dẫn học sinh tìm lời giải cho tốn Trong đề tài khuôn khổ, giới hạn đề tài đưa số dạng tập điển hình cho dạng tốn Dạng 1: Chứng minh đoạn thẳng Dạng 2: Quan hệ góc tam giác,và góc với đường trịn Dạng 3: Chứng minh ba điểm thẳng hàng Dạng 4: Chứng minh tam giác đồng dạng Dạng 5: Chứng minh điểm thuộc đường tròn Dạng 6: Hệ thức hình học Tổ chức thực hiện: Tìm tịi cách giải tốn Dạng 1: Chứng minh hai đoạn thẳng nhau: BÀI TỐN 1: Trong hình vng ABCD đường trịn đường kính AD vẽ cung AC mà tâm D Nối D với điểm P cung AC, DP cắt đường trịn đường kính AD K Chứng minh PK khoảng cách từ P đến AB Cách giải 1: (Hình 1) Gợi ý : - Kẻ PI AB - Xét hai tam giác APK API Lời giải: Kẻ PI AB Xét APK API : · APK vng K (Vì AKD = 900 góc nội tiếp chắn đường trịn đường kính AD) ADP cân D, AD = DP · P$2 = DAP $ · Mặt khác: P1 = DAP (So le AD // PI) $ $ Do đó: P1 = P APK = API (Có chung cạnh huyền cặp góc nhọn nhau) PK = PI Cách giải 2: (Hình 2) Gợi ý: - Ngoài cách chứng minh hai tam giác APK API cách ta chứng minh P$1 = P$2 Ta µ1 =A µ2 A chứng minh - Gọi F giao điểm AP với đường trịn đường kính AD · Lời giải: Ta có: AFD = 900 (Góc nội tiếp chắn đường trịn) Tam giác ADP cân D có DF đường cao nên DF phân giác µ µ suy D1 = D µ µ µ µ mà D = A1 ; D1 = A Vì góc có cặp cạnh tương ứng vng góc µ µ Suy ra: A1 = A APK = API (Có chung cạnh huyền cặp góc nhọn nhau) PK = PI Cách giải 3: (Hình 2) µ µ Gợi ý: - Cách giải chứng minh A1 = A việc chứng minh áp dụng kiến thức khác - Chú ý AB tiếp tuyến đường tròn tâm D nên ta có: ·IAK = ADK · » Lời giải: Ta có (Có số đo sđ AK ) · Mặt khác góc IAP góc tạo tiếp tuyến dây cung AP đường tròn tâm D · · IAP ADP nên góc nửa số đo góc tâm chắn cung góc 1· 1· ADP = IAK µ µ ·IAP = Suy ra: A1 = A APK = API (Có chung cạnh huyền cặp góc nhọn nhau) PK = PI Cách giải 4: (Hình 3) Gợi ý: - Kéo dài K cắt đường tròn tâm D E - Áp dụng định lí góc tạo tiếp tuyến dây cung » = PE » Lời giải: DK AE nên AP · » Góc BAE (góc tạo tiếp tuyến dây cung AE )Vì AP lại qua điểm cung AE nên AP tia · phân giác góc BAE µ µ Suy ra: A1 = A APK = API (Có chung cạnh huyền cặp góc nhọn nhau) PK = PI Đối với toán để chứng minh hai đoạn thẳng PK PI ta chứng minh APK = API vấn đề giáo viên cần cho học sinh tư vận dụng sáng tạo kiến thức - Trường hợp tam giác vng - Góc tạo tiếp tuyến dây cung - Góc nội tiếp Dạng 2: Quan hệ góc hình học: BÀI TỐN 2: Cho ABC nội tiếp đường trịn tâm O, với AB > AC Kẻ · · · đường cao AH, bán kính OA Chứng minh OAH = ACB - ABC Cách giải 1: (Hình 1) Gợi ý: - Kẻ OI AC cắt AH M - Áp dụng kiến thức góc ngồi tam giác - Góc nội tiếp,góc tâm · · Lời giải: Ta có: OMH = ACB (góc có cặp cạnh tương ứng vng góc) ·AOM ABC · » = (cùng sđ AC ) · · · Trong OAM thì: OMH = AOM + OAH (Góc ngồi tam giác) · · · Hay ACB = ABC + OAH · · · Vậy: OAH = ACB - ABC (Đpcm) Cách giải 2: (Hình 2) Gợi ý: Kẻ tiếp tuyến với đường tròn A cắt BC D · · Lời giải: Ta có: ABC = CAD (1) (Cùng chắn » AC ) · · OAH = ADC (2) (góc có cặp cạnh tương ứng vng góc) Cộng vế (1) (2) Ta được: · · · · ABC + OAH = CAD + ADC · · · CAD + ADC = ACB Mà · · · ABC + OAH = ACB · · · OAH = ACB - ABC Vậy: Cách giải 3: (Hình 3) (góc ngồi tam giác) (Đpcm) Gợi ý: - Kẻ đường kính AOD - Kẻ DK BC · · Lời giải: Ta cóDK // AH OAH = ODK (1) (so le trong) · · » ABC = ADC (2) (góc nội tiếp chắn AC ) Cộng vế (1) (2) Ta · · · OAH + ABC = ·ODK + ADC = ·KDC · · KDC = ACB Mà: (góc có cặp cạnh tương ứng vng góc) · · · · · · + ABC = ACB OAH Vậy OAH = ACB - ABC (Đpcm) Cách giải 4: (Hình 4) Gợi ý: - Kẻ đường kính AOD - Kẻ CK AD · · Lời giải: Ta có: OAH = KCB (1) (góc có cặp cạnh tương ứng vng góc) · · » ABC = ADC (2) (góc nội tiếp chắn AC ) Cộng vế (1) (2) Ta được: · · · · OAH + ABC = KCB + ADC · · ADC = KCA Mà: (góc có cặp cạnh tương ứng vng góc) · · · ¼ · OAH + ABC = KCB + KCA = ACB · · · OAH = ACB - ABC Vậy: (Đpcm) Cách giải 5: (Hình 5) Gợi ý: - Kẻ đường kính AOD - Gọi M giao điểm AH DC · · Lời giải: Ta có: AMC = ACB (1) (góc có cạnh cặp cạnh tương ứng vng góc) · · ADM = ABC (2) » (góc nội tiếp chắn AC ) Trừ vế (1) (2) Ta được: · · · · AMC - ADM = ACB - ABC · · · AMC - ADM = OAH Mà: (góc ngồi tam giác) · · · Vậy OAH = ACB - ABC (Đpcm) Cách giải 6: (Hình 6) Gợi ý: Kẻ OI BC OK AB · µ Lời giải: Ta có: OAH = O (1) (so le trong) · µ1 ABC =O (2) (góc có cặp cạnh tương ứng vng góc) · · µ µ Cộng vế (1) (2) Ta OAH + ABC = O1 + O µO1 + O µ = ACB · » Mà (Cùng sđ AB ) · · · OAH + ABC = ACB · · · OAH = ACB - ABC Vậy (Đpcm) Cách giải 7: (Hình 7) Gợi ý: Tại A kẻ tiếp tuyến Ax đường thẳng Ay // BC · · Lời giải: Ta có: OAH = xAy (1) (góc có cặp cạnh tương ứng vng góc) · · ABC = BAy (2) (so le trong) Cộng vế (1) (2) Ta được: · · · · · OAH + ABC = xAy + BAy = xAB · · xAB = ACB Mà: » (góc nội tiếp chắn AB ) · · · OAH + ABC = ACB · · · OAH = ACB - ABC Vậy (Đpcm) Đây tốn có nhiều cách giải khác toán việc sử dụng yếu tố vẽ thêm đường phụ vấn đề quan cho việc tìm lời giải vấn đề khó học sinh toán giáo viên cần cho học sinh kiến thức vận dụng vào giải toán - Kiến thức hai đường thẳng song song, hai đường thẳng vng góc - Góc nội tiếp, góc tâm, góc ngồi tam giác Dạng 3: Chứng minh ba điểm thẳng hàng: BÀI TOÁN 3: Cho tam giác ABC nội tiếp đường tròn (O) M ; N ; P » » » cá điểm cung nhỏ AB ; BC ; CA MN NP cắt AB AC theo thứ tự R S Chứng minh rằng: RS // BC RS qua tâm đường tròn nội tiếp tam giác ABC Cách giải 1: (Hình 1) Gợi ý: Đây tốn hình tương đối khó học sinh khơng có tư tốt hình học Khi đưa tốn việc vẽ hình vấn đề khó em khơng tìm lời giải Dưới hướng dẫn thầy Ta có AN; BP AN tia phân giác tam giác ABC Gọi I giao điểm đường phân giác Khi ta có I tâm đường trịn nội tiếp tam giác ABC Để chứng minh cho RS // BC I RS ta chứng minh IR//BC; IS//BC sử dụng tiên đề đường thẳng song song để suy điều phải chứng minh Sau thời gian ngắn học sinh tìm lời giải cho toán Và lời giải ngắn mà thầy tìm » µ = CP B · µ µ µ = NAC · ; B Lời giải: Xét NBI ta có: IBN = B2 + B3 mà (Góc nội tiếp ·BAC » · chắn cung NC ); NAC = µ µB A · IBN = ; Do µ µB A · µ1 + B µ1 BIN =A = (Góc ngồi tam giác ABI) · · IBN = BIN NBI cân N N thuộc trung trực đoạn thẳng BI Ta chứng minh đường trung trực đoạn thẳng RN Gọi H giao điểm MN PB Ta có : » +s®AB » +s®AC » 1 sđBC ằ ẳ ằ BN + AM + AP · BHN = sđ = · BHN Vì góc có đỉnh nằm bên đường tròn » » » » = BC AM ¼ = AB AP » = AC BN · ; ; BHN = RN trung trực đoạn thẳng BI BR µ = RIB · µ1 = B µ2 B mµ B 3600 = 900 = RI µ · B2 = RIB RBI cân R IR // BC (Vì tạo với tuyến BI hai góc so le nhau) Cũng chứng minh tương tự ta IS // BC, từ điểm I ngồi đường thẳng BC ta kẻ đường thẳng song song với BC R ; I ; S thẳng hàng Vậy RS // BC RS qua tâm I đường tròn nội tiếp tam giác ABC Cách giải 2: (Hình 2) Gợi ý: Trong cách giải yêu cầu học sinh phải nắm lại kiến thức cũ định lý Ta-lét đảo tính chất đường phân giác tam giác tính chất quan trọng mà em học lớp đa số HS trí khơng hay để ý đến tính chất ¼ ¼ = MB Lời giải: Theo giả thiết ta có MA MN · phân giác ANB Áp dụng tính chất đường phân giác tam giác ABN ta RA NA = NB (1) có: RB SA NA = NC Tương tự: NP phân giác tam giác ACN SC (2) RA SA = » » SC BN = CN nên BN = CN kết hợp với (1) (2) ta RB RS // BC (định lý Ta-lét đảo) Gọi giao điểm RS với AN I, BC AN D RS // BC nên ta có: AI RA NA RA AI NA = = ID RB mà NB RB suy ID NB · · · BND ANB (vì có góc BNA chung BAN NBD ) NA AB AI AB = BD Vậy ID BD Nên NB · ABC Suy BI phân giác góc · Ở ta có I thuộc phân giác AN BAC ta lại vừa chứng minh I thuộc phân · giác ABC nên I tâm đường tròn nội tiếp tam giác ABC.( Đpcm) BÀI TOÁN 4: T điểm đường trịn ngoại tiếp tam giác hạ đường vng góc xuống ba cạnh tam giác ABC nội tiếp đường tròn Chứng minh chân ba đường vng góc thẳng hàng (Đường thẳng gọi đường thẳng Simson) Cách giải 1: µ µ Vì D = E = 90 tứ giác BDPE tứ giác nội tiếp · · BED = BPD (*)(Góc nội tiếp chắn cung) µ = 900 F$ = E tứ giác EFCP tứ giác nội tiếp · · FEC = FPC (**) (Góc nội tiếp chắn cung) · µ Vì tứ giác ABPC nội tiếp đường trịn BPC = - A (1) PD AB · µ PF AC DPF = -A (2) · · Từ (1) (2) BPC = DPF · · BPD = FPC (***) Từ (*) ; (**) (***) · · BED = FEC D ; E ; F thẳng hàng Cách giải 2: PE EC · · PF FC Tứ giác EFCP tứ giác nội tiếp FEP + PCF = 1800 (1) · · ABP + FCP = 1800 Vì tứ giác ABPC nội tiếp đường tròn · · · · Mà ABP + BDP = 180 FCP = DBP (2) PD BD · · PE BC Tứ giác EPDB tứ giác nội tiếp DBP = DEP ( 3) · · Từ (1) ; (2) (3) ta có : PEF + DEP = 180 Suy ba điểm D ; E ; F thẳng hàng Đối với toán tốn khó u cầu học sinh phải huy động nhiều kiến thức có liên quan việc tìm lời giải khó việc tìm cách giải khác vấn đề khó, với thân học sinh không làm sau giáo viên gợi ý học sinh dần tư sáng tạo tìm hướng tốn Đơn vị kiến thức áp dụng để giải toán - Để chứng minh ba điểm thẳng hàng cần chứng minh hai góc kề có tổng số đo 1800 - Tứ giác nội tiếp đường trịn - Góc nội tiếp đường tròn Dạng 4: Chứng minh tam giác đồng dạng: BÀI TỐN 5: Đường trịn (O;R1) (O';R2) tiếp xúc P Một cát tuyến qua P cắt (O;R1) A (O';R2) B Một cát tuyến khác qua P cắt (O;R1) C (O';R2) D Chứng minh tam giác PAC PBD đồng dạng Sau đọc toán giáo viên cần cho học sinh nhắc lại kiến thức hai đường trịn tiếp xúc với Và từ cần yêu cầu học sinh để giải toán chung ta phải xét hai trường hợp xảy Hai đường trịn tiếp xúc ngồi hai đường trịn tiếp xúc Ở tơi trình bày hai đường trịn tiếp xúc ngồi cịn trường hợp hai đường trịn tiếp xúc ngồi chứng minh tương tự Cách giải 1: (Hình 1) Gợi ý: - Tính chất hai đường tròn tiếp xúc - Áp dụng trường hợp đồng dạng thứ hai Lời giải: Ta có tam giác OAP tam giác O'BP tam giác cân O O' Suy ra: · · · · · · OAP = OPA O'PB = O'BP mà OPA = O'PB (Hai góc đối đỉnh) · · OAP = PBO' OAP Tương tự ta có: · · · · OCP = OPC O'PD = O'DP PA PO R = PO' R (1) O'BP PB · · mà OPC = O'PD ( Hai góc đối đỉnh) PC PO R = · · PO' R (2) OCP = PDO' OCP O'DP PD PC R PA = PD R2 Từ (1) (2) ta có: PB · · CPA = BPD Lại có Suy : Cách giải 2: (Hình 2) PA1B1 PA2B2 Gợi ý: - Kẻ tiếp tuyến chung xPy hai đường tròn - Áp dụng trường hợp đồng dạng thứ ba - Áp dụng định lí góc tạo tia tiếp tuyến dây cung Lời giải: Kẻ tiếp tuyến chung xPy hai đường trịn · · · · Ta có CAP = CPy = xPD = PBD (Áp dụng tính chất góc tạo tiếp tuyến dây cung góc nội tiếp chắn cung nhau) · · Mặt khác APC = BPD (hai góc đối đỉnh) Suy : PA1B1 PA2B2 Bài tập giải nhiều cách Bài tập 1: Ở miền hình vng ABCD lấy điểm E cho · · EAB = EBA = 150 Chứng minh tam giác ADE tam giác Bài tập 2: Chứng minh định lí Pitago Bài tập 3: Cho hình vng ABCD, O giao điểm đường chéo AC BD gọi M N trung điểm OB CD chứng minh A; M; N; D thuộc đường tròn Bài tập 4: Cho tứ giác ABCD; AD = BC; M N trung điểm AB DC kéo dài AD, MN cắt E kéo dài BC, MN cắt F Chứng · · = BFM minh rằng: AEM Bài tập 5: Cho tam giác ABC nội tiếp đường trịn tâm O đường kính AC Trên tia AB lấy điểm D cho AD = 3AB Đường thẳng Dy vng góc với DC D cắt tiếp tuyến Ax đường tròn (O) E Chứng minh tam giác BDE tam giác cân Khái quát hoá tốn Sau tìm cách giải khác nhau, giáo viên cần cho học sinh khái quát hoá toán cách trả lời số câu hỏi cụ sau: 1) Trong cách chứng minh kiến vận dụng ? 2) Có cách chứng minh tương tự nhau? Khái quát đường lối chung cách ấy? 3) Và cách chứng minh kiến thức vận dụng kiến thức học lớp mấy, hỏi cụ thể chương tiết để kiểm tra nắm vững kiến thức học sinh 4) Cần cho học sinh phân tích hay cách trường hợp cụ thể ta nên áp dụng cách để đơn giản áp dụng để giải câu liên quan hình khơng có câu mà cịn có câu liên quan 5) Việc khái quát hoá toán vấn đề quan trọng Khái qt hóa tốn thể lực tư duy, sáng tạo học sinh Để bồi dưỡng cho em lực khái quát hố đắn phải bồi dưỡng lực phân tích, tổng hợp, so sánh, vận dụng kiến thức liên quan để biết tìm cách giải vấn đề trường hợp 6) Việc tìm nhiều lời giải cho tốn vấn đề khơng đơn giản địi hỏi học sinh phải có lực tư logic, kiến thức tổng hợp Khơng phải tốn tìm nhiều lời giải Mà thơng qua tốn với nhiều lời giải nhằm cho học sinh nắm sâu kiến thức vận dụng kiến thức thành thạo để giải tốn khác II.1 Tính mới, tính sáng tạo: II.1.1 Tính mới: Sáng kiến “Rèn luyện khả tìm lời giải tốn hình học cho học sinh khá, giỏi lớp 9” nêu phương pháp, hướng dẫn học sinh tìm hiểu, khai thác kiến thức hình học nhằm phát huy lực tư sáng tạo em học sinh Từ giúp em học sinh không dễ dàng tiếp thu kiến thức mơn mà cịn học tập môn khác cách nhanh hơn, tốt đạt hiệu cao II.1.2 Tính sáng tạo: Sáng kiến áp dụng mơn tốn khối lớp môn khoa học tự nhiên Giáo viên áp dụng sáng kiến việc giảng dạy theo phương pháp dạy học dạy học stem, dạy học theo trạm, dạy học bàn tay nặn bột, … Sử dụng kĩ thuật dạy học hoạt khăn trải bàn, đồ tư duy… II.2 Khả áp dụng, nhân rộng: Với sáng kiến học sinh hiểu chất tốn hình học Do đó, đề tài khơng dừng lại việc bồi dưỡng học sinh giỏi mơn hình học mà đề tài cịn mở rộng cho việc bồi dưỡng học sinh giỏi mơn tốn khoa học tự nhiên lớp 6,7,8 cách hiệu quả, khơng cịn giúp em phát triển tư duy, sáng tạo môn học II.3 Hiệu quả, lợi ích thu áp dụng giải pháp a Hiệu kinh tế: b Hiệu mặt xã hội: Trong thực tế giảng dạy việc bồi dưỡng học sinh giỏi mơn tốn, với cách làm mang lại hiệu cao việc rèn luyện lực sáng tạo toán cho học sinh Cụ thể 85% em học sinh thực có hứng thú học toán bồi dưỡng cho học sinh giỏi, tự độc lập tìm tịi nhiều cách giải khác mà không cần gợi ý giáo viên 15% em cần gợi ý trường hợp, song mong muốn tham dự lớp bồi dưỡng học sinh giỏi c Giá trị làm lợi khác: Trong năm bồi dưỡng học sinh giỏi áp dụng sáng kiến này, tơi có nhiều giải học sinh giỏi cấp … CƠ QUAN ĐƠN VỊ ÁP DỤNG SÁNG KIẾN (Xác nhận) (Ký tên, đóng dấu) ………., ngày tháng năm Tác giả sáng kiến (Ký tên) ... thẳng gọi đường thẳng Simson) Cách giải 1: µ µ Vì D = E = 90 tứ giác BDPE tứ giác nội tiếp · · BED = BPD (*)(Góc nội tiếp chắn cung) µ = 90 0 F$ = E tứ giác EFCP tứ giác nội tiếp · · FEC =... VỀ SÁNG KIẾN Tên sáng kiến: “Rèn luyện khả tìm lời giải tốn hình học cho học sinh khá, giỏi lớp 9? ?? Lĩnh vực áp dụng sáng kiến: Dạy học mơn Tốn Tác giả: Họ tên: ………………………… Ngày/tháng/năm sinh:... PI AB - Xét hai tam giác APK API Lời giải: Kẻ PI AB Xét APK API : · APK vuông K (Vì AKD = 90 0 góc nội tiếp chắn đường trịn đường kính AD) ADP cân D, AD = DP · P$2 = DAP $ · Mặt khác: