SỞ GD & ĐT TỈNH ĐĂKLĂK TRƯỜNG THPT BC LÊ HỮU TRÁC I/ PHẦN TRẮC NGHIỆM: ĐỀ KIỂM TRA HỌC KỲ I LỚP 10 NỘP SỞ BAN CƠ BẢN Câu Cho tam giác ABC có A(1; 2), B(0; 3), C(-1; -2) Trọng tâm G tam giác BC là: A G(0; 2) B G(1; 1) C G(0; 1) D G(0; -1) Câu Cho ba điểm A(3; 2), B(2; 1), C(1; 0) Khi đó: A AB BC B AC 3BC C BA BC D Trọng tâm G(2; 1) Câu Cho hai điểm A(3; 1), B(7; 4) Toạ độ trung điểm đoạn AB là: 5 A A(5; 4) B.(5; ) C.(4; ) D.(5; ) 2 Câu Trong mặt phẳng với hệ toạ độ Oxy cho A(7; 2), B(3; 4) Toạ độ vectơ AB laø: A (-4; 1) B(-4; 3) C(-3; 2) D(-4; 2) 3 Câu sin1500 là: A B C.1 D 2 Caâu : Cho tập hợp S= x / x x 0 Daïng khai triển tập S là: A ) S= 1; 2 B ) S= 1;0 Caâu 7: Cho A= 1; 2;3; 4 C) S= 1; 1 , B = 3; 4;7;8 , C = 3; 4 Haõy chọn kết kết sau đây: A) AC=B B) BC=A C) A=B D) AB=C 2x Taäp xác định hàm số là: x 1 B) R\ 1 C) D=R\ 1;0;1 D ) D=R* \ 1 Caâu 8: Cho hàm số y= A) D=R D) S = 0; 2 Câu 9: Cho hàm số y=x2 + x Điểm thuộc đồ thị hàm số: A) A(0;1) B) B(-1;2) C) C(1;2) Câu 10 : Cho hàm số f(x)=2x + Hãy chọn kết ñuùng: A) f(2007) < f(2005) ; B) f(2007)=f(2005) ; C) f(2007) ≠ f(2005) Câu 11: Đồ thị hàm số y=f(x) = 2x + 3x +1 nhận đường thẳng 3 làm trục đối xứng 3 C) x= làm trục đối xứng D) D(3;10) D) f(2007)>f(2005) làm trục đối xứng D) x= làm trục đối xứng A) x= B) x= Caâu 12 : Paraopol y=3x2 -2x +1, có tọa độ đỉnh : 2 A) ; 3 1 2 B) ; 3 2 C) ; 3 3 1 D) ; 3 Câu 13 : Hàm số y=x2 -5x +3) 5 5 B) Hàm số đồng biến khoảng ; ; 2 2 5 C) Hàm số nghịch biến khoảng ; ; D) Hàm số đồng biến khoảng (0;3) 2 A) Hàm số đồng biến khoảng ; ; Câu 14: Phương trình 2x+1 =1-4x tương đương với phương trình A ) (x2+1)x = ; B )x(x-1) = ; C ) x x DeThiMau.vn x0 ; D) x x 0 Câu 15: Phương trình A ) D=R ; x2 có điều kiện là: x2 B ) (2;+) ; C) [2; +) ; D) R\{2} II/ PHẦN TỰ LUẬN: Bài 1( Điểm ) : Cho hàm số : y x x a) Xác định trục đối xứng đồ thị hàm số b) Cho điểm M thuộc đồ thị có hoành độ Hãy xac định tọa độ điểm M’ đối xứng M qua trục đối xứng đồ thị hàm số Bài 2( Điểm ) : Giải hệ phương trình sau : x y 3 x y a) , b) x y x y Bài ( Điểm ) : Cho phương trình : x x 1 m 1 a) Giải phương trình m= b) Xác định m để phương trình có nghiệm Bài ( Điểm ) Cho bốn điểm A,B,C, D tuỳ ý Chứng minh : AB CD AD CB Bài ( Điểm ) : Cho tam giác ABC Gọi G tâm tam giác ABC , I trung điểm BC Chứng minh : a AI AB AC b AG AB AC 2 3 ĐÁP ÁN PHẦN TRẮC NGHIỆM: CÂU ĐÁP ÁN C A B CÂU 11 12 13 ĐÁP ÁN C A B D 14 A B 15 B A D A Đ ÁP ÁN PH ẦN T Ự LU ẬN: CÂU NỘI DUNG b 1(2điểm) Trục đối xứng x = 2a 1a Do tính chất đối xứng yM = yM’ , xM = yM = 42 yM’ = 42 1b DeThiMau.vn C ĐIỂM 1điểm 0.5điểm 10 D 2(1điểm) 2a.(0.5điểm) Đặt t = 4(1 điểm) x 11 a y 13 11 0.5điểm x b y 0 3(2điểm) b(1.0 điểm) 0.5 điểm (Có thể dùng máy tính) 2b(0.5điểm) a.(1.0điểm) Ta coù xM + xM’ = ( ) xM’ = -8 vaäy M’(-8; 42) x 1 , t x = t2 + Phương trình trở thành: t2 + t - m = (*) ( n) t a m = giải (*) t (l ) Với t = x= b Phương trình cho có nghiệm (*) t Ta coù 1 4m 1 = m = (*) có nghiệm t = - Không thoả > m> Khi : + (*) có hai nghiệm không âmphân biệt P S hệ vô nghiệm + (*) có hai nghiệm trái dấu nghiệm 0 a.c m Kết luận: m 4.p dụng quy tắc ba điểm phép cộng phép trừ 5a Vận dụng công thức trung điểm ta AB AC AI AI AB AC 2 5b Theo tính chất trọng tâm tam giác ABC ta có: AG AI ( AB AC ) AB AC 3 2 3 DeThiMau.vn 0.5điểm 0.25 0.5 0.25 0.25 0.25 0.25 0.25 1.0 0.5 ... ĐIỂM 1? ?iểm 0.5điểm 10 D 2 (1? ?iểm) 2a.(0.5điểm) Đặt t = 4 (1 ñieåm) x 11 a y 13 11 0.5điểm x b y 0 3(2điểm) b (1. 0 điểm) 0.5 điểm (Có thể dùng máy tính) 2b(0.5điểm) a. (1. 0điểm)... CÂU 11 12 13 ÑAÙP AÙN C A B D 14 A B 15 B A D A Đ ÁP ÁN PH ẦN T Ự LU ẬN: CÂU NỘI DUNG b 1( 2điểm) Trục đối xứng x = 2a 1a Do tính chất đối xứng yM = yM’ , xM = yM = 42 yM’ = 42 1b DeThiMau.vn...Câu 15 : Phương trình A ) D=R ; x2 có điều kiện là: x2 B ) (2;+) ; C) [2; +) ; D) R{2} II/ PHAÀN TỰ LUẬN: Bài 1( Điểm ) : Cho hàm soá : y x x a) Xác định trục đối xứng đồ thị hàm số