1. Trang chủ
  2. » Luận Văn - Báo Cáo

Thi chọn học sinh giỏi cấp trường nh 20122013 môn: toán lớp 10 thời gian: 120 phút (không kể thời gian giao đề)47866

5 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 179,14 KB

Nội dung

TRƯỜNG THPT KON TUM ĐỀ CHÍNH THỨC (Đề thi gồm 01 trang) THI CHỌN HS GIỎI CẤP TRƯỜNG NH 2012-2013 Mơn: TỐN - Lớp 10 Ngày thi: 31/01/2013 Thời gian: 120 phút (Không kể thời gian giao đề) ĐỀ BÀI Bài (4.0 điểm) Giải phương trình: 11 25  1 x  x  2  x2  y      2.Giải hệ phương trình:   x  y  1    3  x y     Bài (5.0 điểm) Cho hàm số y  x  2ax  b (1) Biết đồ thị (P) hàm số (1) có trục đối xứng x  có đỉnh nằm trục Ox Hãy lập bảng biến thiên vẽ đồ thị (P) Tìm (P) điểm M cho tổng khoảng cách từ M tới hai trục tọa độ nhỏ Bài (3.0 điểm) Cho tam giác ABC cạnh a Trên cạnh BC, CA, AB lấy điểm M, N, P cho: BM  a 2a ; CN  ; AP  x (0  x  a ) Tìm x theo a để AM  PN 3 Bài (2 điểm) Tìm đa thức với hệ số ngun khơng đồng khơng có bậc nhỏ nhận x  3  làm nghiệm Bài (3.0 điểm) Chứng minh với số thực dương x, y, z ta có: x  y  2013 z   x3  y   x  y  2013 x yz Bài (3.0 điểm) Cho tam giác ABC không cân C, kẻ đường phân giác AD, BE  D  BC , E  AC  biết AD.BC  BE AC Tính góc C - HẾT - DeThiMau.vn HƯỚNG DẪN CHẤM VÀ BIỂU ĐIỂM Chú ý: 1.Trong đề tốn có nhiều mà phương pháp giải có nhiều lựa chọn, giáo viên chấm cần để ý kĩ cách giải học sinh để xây dựng đáp án phù hợp cho cách giải khác 2.Bài tốn có nhiều ý độc lập học sinh làm bước cho điểm bước đó, ý sau liên quan tới ý trước mà ý trước sai khơng chấm tiếp ý cịn lại Đáp án chấm chi tiết Câu 1.1 Nội dung 11 25  (1) Giải phương trình:  x  x  2 Điểm 2đ Đặt t  x   t  0; t  5  phương trình trở thành 0.5đ 11  t  5  25 2   11t  25  t    t  t   t 0.5đ  t  10t  39t  250t  625  625    25    t    10  t    39  t  t    25 Đặt a  t   a  10, a  10  (*) t 0.5đ ta thu phương trình a  10a  11   a  11(do(*)) Với a  11 ta có t  25 11  21  11  t  11t  25   t  t phương trình cho có nghiệm là: x  1.2  21  x2  y    Giải hệ phương trình:     x  y  1    3   x y   x  y  x  y    Ta có ( I )    x  y  1  x  y     a  x  y Đặt   b   ta có hệ ( I ) trở thành b  x  y DeThiMau.vn 0.5đ 2đ (I ) 0.5đ 1 a  a.b    b (I )    2  a  1  b   a  12  4a  36  (1) (2) a  Từ (2) ta có phương trình:  a  1  a  27  8a  18a  18     a  3   x  x  y     *Với a  ta có b  suy  x  y   y   2 nghiệm hệ 1 ;  2 2 2.1 0.5đ 35 29  ;   8   x; y    Cho hàm số y  x  2ax  b (1) Biết đồ thị (P) hàm số (1) có trục đối xứng x= có đỉnh nằm trục Ox Hãy lập bảng biến thiên vẽ đồ thị (P) Vì (P) có trục đối xứng x = nên a   a  2 mà đỉnh (P) nằm Ox  22  4.2  b  b  hàm số trở thành y  x  x  Bảng biến thiên x y 0.5d  x; y    35  x   x  y    *Với a   ta có b  8 suy  4 29  x  y  8 y   nghiệm hệ 0.5đ  + 2đ 0.5 0.5 + + Đồ thị hàm số parabol có đỉnh I(2;0), nhận x = làm trục đối xứng qua điểm A(1; 1), B(0;4), C(3; 1), D(4;4) Vẽ đúng, đẹp đồ thị hàm số 0.5 0.5 y x O 2.2 Tìm (P) điểm M cho tổng khoảng cách từ M tới hai trục tọa độ nhỏ DeThiMau.vn 3đ Gọi A giao điểm với (P) d ( M , Ox)   a   M  ( P)  M a;  a     d ( M , Oy)  a   Vậy với S  d ( M , Ox)  d ( M , Oy)  a   a   Oy ta có A(0;4), M Nếu a < S > 0.5đ Nếu a > S >2 3 7  Nếu  a  S  a   a     a     2 4  3 1 Từ kết ta có S nhỏ xảy a  M  ;  2 4 điểm cần tìm Cho tam giác ABC cạnh a Trên đoạn BC, CA, AB lấy điểm M, N, P cho: BM = 1đ 0.5đ 1đ 3đ a 2a ; CN = ; AP = x (0 < x < a) Tìm x theo a để AM  PN 3 Từ giả thiết ta có: AP x  x  AN     AP  AB;   AN  AC AB a a AC 3 0.75      PN  AN  AP  AC  x AB a   x     suy PN  AC  AB  3aPN  a AC  x AB a       Hơn nữa: AM  AB  AC  3AM  AB  AC 3 AM  NP  0.5         AM PN   AM 3aPN   AB  AC 3 x AB  a AC     0.75    6 x AB  aAC   2a  x  AB AC   6 xa  a   2a  x  a   15 xa  2a   x  a 15 Tìm đa thức với hệ số ngun khơng đồng khơng có bậc nhỏ nhận x  3  làm nghiệm Ta có x  3   3  x     x  1  x3  x  x   Vậy P( x)  x3  x  x  đa thức thỏa ycbt Ta chứng minh n = bậc nhỏ cần tìm Thật khơng có đa thức bậc với hệ số nguyên nhận x  3  làm nghiệm, giả sử tồn đa thức bậc hai DeThiMau.vn 2đ với hệ số nguyên nhận x  3  làm nghiệm ax  bx  c tồn đa thức với hệ số nguyên mx + n cho P( x)   mx  n  ax  bx  c cách   đồng hệ số ta thấy không tồn m, n, a, b, c nguyên Vậy Q( x)  k x3  x  x  (k  ฀ , k  0) đa thức cần tìm   x  y  2013 CMR với số thực dương x, y, z ta có: z   x3  y   3đ x  y  2013 (1) x yz Ta có : (1)   x  y   x  y 0,5đ Mà  x3  y    x  y    x  y  x  y   1,5đ Suy ra: z   x  y   z  x  y 0,5đ Vậy x  y  2013 z   x3  y   x  y  2013 x yz 0,5đ Cho tam giác ABC không cân C, kẻ đường phân giác AD, BE  D  BC , E  AC  biết AD.BC  BE AC Tính góc C 3đ Gọi O giao điểm hai đường phân giác 1đ ADB  BE AC.sin ฀ AEB Ta có: AD.BC sin ฀ mà AD.BC  BE AC  sin ฀ ADB  sin ฀ AEB ฀ ADB  ฀ AEB   ฀ ADB  ฀ AEB  180o TH1: Nếu ฀ ADB  ฀ AEB A,E,B,D nằm đường trịn ฀ ฀ ฀ ฀ , điều trái với giải thiết toán EAD  EBD tức A  B ฀  EOD ฀ TH2: Nếu ฀ ADB  ฀ AEB  180o ECD  180o  0.5đ 0.5đ 0.5đ  1฀ ฀ ฀ ฀ AOB  180o  ฀ ABO  BAO  90o  C EOD ฀ ฀ ฀  90o  C ฀ C ฀  60o  EOD C Suy 180o  ECD ฀  60o Tóm lại góc với giả thiết toán xảy thi C 0.5đ A C P N E D B B M Hình vẽ A C Hết DeThiMau.vn Hình vẽ ... đề tốn có nhiều mà phương pháp giải có nhiều lựa chọn, giáo viên chấm cần để ý kĩ cách giải học sinh để xây dựng đáp án phù hợp cho cách giải khác 2.Bài tốn có nhiều ý độc lập học sinh làm bước...  60o  EOD C Suy 180o  ECD ฀  60o Tóm lại góc với giả thi? ??t toán xảy thi C 0.5đ A C P N E D B B M H? ?nh vẽ A C Hết DeThiMau.vn H? ?nh vẽ ... x= có đ? ?nh nằm trục Ox Hãy lập bảng biến thi? ?n vẽ đồ thị (P) Vì (P) có trục đối xứng x = nên a   a  2 mà đ? ?nh (P) nằm Ox  22  4.2  b  b  hàm số trở th? ?nh y  x  x  Bảng biến thi? ?n x

Ngày đăng: 31/03/2022, 17:46

HÌNH ẢNH LIÊN QUAN

xứng x= 2 và có đỉnh nằm trên trục Ox. Hãy lập bảng biến thiên và vẽ đồ thị (P).  - Thi chọn học sinh giỏi cấp trường nh 20122013 môn: toán  lớp 10 thời gian: 120 phút (không kể thời gian giao đề)47866
x ứng x= 2 và có đỉnh nằm trên trục Ox. Hãy lập bảng biến thiên và vẽ đồ thị (P). (Trang 3)
Hình vẽ bài 3AP - Thi chọn học sinh giỏi cấp trường nh 20122013 môn: toán  lớp 10 thời gian: 120 phút (không kể thời gian giao đề)47866
Hình v ẽ bài 3AP (Trang 5)