1. Trang chủ
  2. » Luận Văn - Báo Cáo

Đề thi chọn HSG lớp 11 tỉnh Vĩnh Phúc năm học 20112012 môn: Toán dành cho học sinh THPT không chuyên36866

4 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 180,13 KB

Nội dung

SỞ GD&ĐT VĨNH PHÚC —————— ĐỀ CHÍNH THỨC KỲ THI CHỌN HSG LỚP 11 NĂM HỌC 2011-2012 ĐỀ THI MÔN: TỐN Dành cho học sinh THPT khơng chun Thời gian làm bài: 180 phút, không kể thời gian giao đề ———————————— Câu (1,5 điểm) tan x  tan x   Giải phương trình: sin  x    tan x  4  Câu (3,0 điểm) Gọi A tập hợp tất số tự nhiên có chữ số Chọn ngẫu nhiên số từ tập A, tính xác suất để chọn số chia hết cho chữ số hàng đơn vị Chứng minh đẳng thức sau: C   C   C   C    C   C   C 2012 2012 2 2012 2012 2011 2012 2012 2012 1006 2012 Câu (2,5 điểm) Chứng minh phương trình x3  x   có ba nghiệm thực phân biệt Hãy tìm nghiệm sin n Cho dãy số un  xác định bởi: u1  sin1; un  un 1  , với n  ฀ , n  n Chứng minh dãy số un  xác định dãy số bị chặn Câu (3,0 điểm) Cho hình chóp tứ giác S.ABCD có đáy ABCD hình vng cạnh a , cạnh bên 3a ( a  ) Hãy xác định điểm O cho O cách tất đỉnh hình chóp S.ABCD tính độ dài SO theo a Cho hình chóp S.ABC có đường thẳng SA vng góc với mặt phẳng (SBC) Gọi H hình chiếu vng góc S lên mặt phẳng (ABC) Chứng minh đường thẳng SB vng góc với 1 1 đường thẳng SC, biết  2 2 SH SA SB SC Cho tứ diện ABCD thỏa mãn điều kiện AB  CD, BC  AD, AC  BD điểm X thay đổi khơng gian Tìm vị trí điểm X cho tổng XA  XB  XC  XD đạt giá trị nhỏ —Hết— Cán coi thi không giải thích thêm Họ tên thí sinh:……….……… …….…….….….; Số báo danh……………… ThuVienDeThi.com SỞ GD&ĐT VĨNH PHÚC ——————— KỲ THI CHỌN HSG LỚP 11 THPT KHÔNG CHUYÊN NĂM HỌC 2011-2012 HƯỚNG DẪN CHẤM MƠN: TỐN ——————————— I LƯU Ý CHUNG: - Hướng dẫn chấm trình bày cách giải với ý phải có Khi chấm học sinh làm theo cách khác đủ ý cho điểm tối đa - Điểm tồn tính đến 0,25 khơng làm trịn - Với hình học thí sinh khơng vẽ hình phần khơng cho điểm tương ứng với phần II ĐÁP ÁN: Nội dung trình bày Câu Ý 1,5 điểm Điểm   k (*) Phương trình cho tương đương với: cos x(tan x  tan x)  sin x  cos x 0,25  2sin x  2sin x.cos x  sin x  cos x  2sin x(sin x  cos x)  sin x  cos x  (sin x  cos x)(2sin x  1)  0,5 Điều kiện: cos x   x  + Với sin x  cos x   tan x  1  x     k 0,25  5  x   k 2 ; x   k 2 6 Đối chiếu điều kiện (*), suy nghiệm phương trình cho là:   5 x    k ; x   k 2 ; x   k 2 (k  ฀ ) 6 1,5 điểm Số số tự nhiên có chữ số 99999  10000   90000 Giả sử số tự nhiên có chữ số chia hết cho chữ số hàng đơn vị là: abcd1 Ta có abcd1  10.abcd   3.abcd  7.abcd  chia hết cho 3.abcd  h 1 chia hết cho Đặt 3.abcd   h  abcd  2h  số nguyên h  3t  Khi ta được: abcd  7t   1000  7t   9999 998 9997  t   t  143, 144, , 1428 suy số cách chọn t cho số abcd1 7 chia hết cho chữ số hàng đơn vị 1286 1286 Vậy xác suất cần tìm là:  0, 015 90000 1,5 điểm + Với 2sin x    sin x  Xét đẳng thức 1  x  2012 +) Ta có 1  x  2012 1  x  2012  1  x  2012 2012 0,5 0,5 0,5 k 0,5 k 0 2012  2012 k  k  k xk     C2012  x     C2012  k 0   k 0  2012 suy hệ số số hạng chứa x o 2012 2011 2010 2009 2012 2012 C2012C2012  C2012C2012  C2012C2012  C2012 C2012   C2012 C2012 +) Ta có 1  x  0,25 0,5 1006 k   C2012  x  suy hệ số số hạng chứa x 2012 C2012 2012 0,25 1  x  2012 0,5 2011 2012  C2012   C2012   C2012   C2012    C2012   C2012  2 Từ suy đẳng thức cần chứng minh ThuVienDeThi.com 2 1,5 điểm Đặt f x   x3  x  ; tập xác định D  ฀ suy hàm số liên tục ฀ Ta có  1 f 1  3, f     1, f 0   1, f 1  suy  2  1  1 f 1 f     0, f    f 0   0, f 0  f 1  Từ bất đẳng thức tính liên  2  2 tục hàm số suy pt f x   có ba nghiệm phân biệt thuộc 1; 1 0,25 0,5 0,25 Đặt x  cos t , t  0;   thay vào pt ta được: 4 cos3 t  3cos t   cos 3t  cos  t  k 2 , kết hợp với t  0;   ta   5 7  ; t   ;  Do phương trình cho có nghiệm: 9 9   5 7 x  cos , x  cos , x  cos 9 1,0 điểm 1 1 Nhận xét Với số nguyên dương n ta có:      2 n 1 1 1 Thật vậy, ta có           n 1.2 2.3 n n  1 1 1 1            suy nhận xét chứng minh 2 n 1 n n sin1 sin sin n Trở lại tốn, từ cơng thức truy hồi ta được: un     2 n 1 Ta có un      với n (theo nhận xét trên) (1) n  1 Mặt khác un         2 với n (theo nhận xét trên) (2) Từ (1) n  1 (2) suy dãy số cho bị chặn 1,0 điểm 0,5 0,5 0,25 0,25 S M O D C 0,25 I A B Gọi I  AC  BD Do SA  SB  SC  SD nên tam giác SAC, SBD cân đỉnh S nên SI vng góc với AC, BD suy SI vng góc với mặt phẳng (ABCD) Dễ thấy điểm nằm đường thẳng SI cách đỉnh A, B, C, D Trong tam giác SIC, dựng trung trực cạnh SC cắt đường thẳng SI O suy OS  OA  OB  OC  OD SM SC 3a.3a 9a 2a Ta có SM SC  SO.SI  SO     SI SA2  IA2 9a  a 2a Vậy SO  ThuVienDeThi.com 0,25 0,5 1,0 điểm A H 0,25 C S K B D Gọi K giao điểm đường thẳng AH BC; mặt phẳng (SBC) gọi D giao điểm đường thẳng qua S, vng góc với SC Ta có BC vng góc với SH SA nên BC vng góc với mặt phẳng (SAH) suy BC vng góc với SK 1 Trong tam giác vng SAK ta có  2 , kết hợp với giả thiết ta SH SA SK 1  2 (1) SK SB SC 1 Trong tam giác vuông SDC ta có   (2) 2 SK SD SC Từ (1) (2) ta SB  SD , từ suy B  D hay suy SB vng góc với SC 1,0 điểm 0,5 0,25 A Q M G D B 0,25 N P C Gọi G trọng tâm tứ diện; M, N, P, Q trung điểm cạnh AB, CD, BC, AD Ta có tam giác ACD tam giác BCD nên AN  BN suy MN  AB , tương tự ta chứng minh MN  CD đường thẳng PQ vng góc với hai đường thẳng BC, AD Từ suy GA  GB  GC  GD XA.GA  XB.GB  XC.GC  XD.GD Ta có XA  XB  XC  XD  GA         XA.GA  XB.GB  XC.GC  XD.GD  GA      XG GA  GB  GC  GD  4.GA2   4GA Dấu xảy X trùng với GA điểm G Vậy XA  XB  XC  XD nhỏ X trọng tâm tứ diện ABCD  0,5  ThuVienDeThi.com 0,25 ... GD&ĐT VĨNH PHÚC ——————— KỲ THI CHỌN HSG LỚP 11 THPT KHÔNG CHUYÊN NĂM HỌC 2 011- 2012 HƯỚNG DẪN CHẤM MƠN: TỐN ——————————— I LƯU Ý CHUNG: - Hướng dẫn chấm trình bày cách giải với ý phải có Khi chấm học. .. giải với ý phải có Khi chấm học sinh làm theo cách khác đủ ý cho điểm tối đa - Điểm tồn tính đến 0,25 khơng làm trịn - Với hình học thí sinh khơng vẽ hình phần khơng cho điểm tương ứng với phần II... hết cho 3.abcd  h 1 chia hết cho Đặt 3.abcd   h  abcd  2h  số nguyên h  3t  Khi ta được: abcd  7t   1000  7t   9999 998 9997  t   t  143, 144, , 1428 suy số cách chọn t cho

Ngày đăng: 30/03/2022, 19:27

HÌNH ẢNH LIÊN QUAN

- Với bài hình học nếu thí sinh không vẽ hình phần nào thì không cho điểm tương ứng với phần đó. - Đề thi chọn HSG lớp 11 tỉnh Vĩnh Phúc năm học 20112012 môn: Toán dành cho học sinh THPT không chuyên36866
i bài hình học nếu thí sinh không vẽ hình phần nào thì không cho điểm tương ứng với phần đó (Trang 2)
w