Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
562,1 KB
Nội dung
MỤC LỤC Tiêu đề Mở đầu 1.1 Lý chọn đề tài 1.2 Mục đích nghiên cứu 1.3 Đối tượng nghiên cứu 1.4 Phương pháp nghiên cứu Nội dung sáng kiến kinh nghiệm 2.1 Cơ sở lí luận sáng kiến kinh nghiệm 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm 2.3 Các sáng kiến kinh nghiệm giải pháp sử dụng để giải vấn đề 2.3.1 Một số tập áp dụng 2.3.1.1 Bài toán áp dụng bất đẳng thức Cơsi 2.3.1.2 Bài tốn áp dụng bất đẳng thức Bunhia Cơpski 2.3.1.3 Bài tốn áp dụng tam thức bậc hai 2.3.1.4 Bài toán áp dụng giá trị cực đại hàm số sin hàm số cosin 2.3.1.5 Bài toán dùng suy luận 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường Kết luận, kiến nghị 3.1 Kết luận 3.2 Kiến nghị Tài liệu tham khảo Danh mục sáng kiến kinh nghiệm hội đồng sáng kiến kinh nghiệm ngành giáo dục đào tạo huyện, tỉnh cấp cao xếp loại từ C trở lên download by : skknchat@gmail.com Trang 2 2 3 4 4 10 11 12 13 13 13 15 16 Mở đầu 1.1 Lí chọn đề tài Từ năm học 2005 - 2006, Bộ GD – ĐT định chuyển từ hình thức thi tự luận sang thi trắc nghiệm khách quan đem lại đổi mạnh mẽ việc dạy học giáo viên học sinh Tuy nhiên, qua thời gian thực tế giảng dạy trường THPT nhận thấy số vấn đề sau: - Việc dạy học đánh giá thi cử theo hình thức trắc nghiệm khách quan địi hỏi giáo viên học sinh phải có thay đổi cách dạy học Dạy học theo phương pháp trắc nghiệm khách quan đòi hỏi giáo viên phải đầu tư theo chiều sâu mà phải đầu tư kiến thức theo chiều rộng, người dạy phải nắm tổng quan chương trình mơn học Điều gây nhiều khó khăn cho giáo viên, đặc biệt đội ngũ giáo viên trẻ chưa có nhiều kinh nghiệm giảng dạy - Khi chuyển sang hình thức dạy học đánh giá thi cử theo phương pháp trắc nghiệm khách quan số giáo viên mở rộng kiến thức kiến thức theo chiều rộng để đáp ứng cho vấn đề thi theo hình thức trắc nghiệm Vì vấn đề đầu tư cho việc giải toán theo phương pháp tự luận bị mờ nhạt Điều ảnh hưởng lớn đến chất lượng, mức độ hiểu sâu kiến thức Vật lý học sinh, đặc biệt học sinh trường Trong chương trình vật lý THPT có nhiều tốn giải theo phương pháp tính giá trị cực đại, cực tiểu của đại lượng Vật lý Mỗi loại toán có số cách giải định Song, để chọn cách giải phù hợp điều khó khăn cho học sinh số giáo viên, lẽ: Chưa có tài liệu viết vấn đề có tính hệ thống Để góp phần cải thiện thực trạng trên, định thực đề tài “Giúp học sinh sử dụng linh hoạt bất đẳng thức tam thức bậc hai vào toán cực trị phần Cơ học Vật Lí 10 THPT”, để nghiên cứu, chia sẻ và trao đởi với đờng nghiệp Qua giúp học sinh giải vướng mắc khó khăn gặp tốn cực trị 1.2 Mục đích nghiên cứu - Đưa được các phương pháp giải bài toán cực trị nói chung tốn cực trị phần Cơ học Vật Lí 10 THPT nói riêng - Biết cách vận dụng và khai thác các kiến thức toán vào đúng bài, đúng dạng và đúng phạm vi của nó 1.3 Đối tượng nghiên cứu download by : skknchat@gmail.com - Các tài liệu, sách tham khảo có liên quan đến “bài toán cực trị phần Cơ học Vật Lí 10 THPT” - Chương trình vật lý phở thơng - Các kiến thức toán ứng dụng - Học sinh khối 10, đặc biệt là đối tượng học sinh khá, giỏi nhà trường Qua giúp học sinh giải đơn giản toán cực trị phần Cơ học gặp trình học tập 1.4 Phương pháp nghiên cứu - Phương pháp chính là: tổng kết kinh nghiệm - Phương pháp nghiên cứu tài liệu, sách tham khảo, tạp chí - Phương pháp hỗ trợ trao đổi kinh nghiệm từ các giáo viên - Phương pháp điều tra bản Nội dung sáng kiến kinh nghiệm 2.1 Cơ sở lí luận sáng kiến kinh nghiệm Khi giải tập Vật lý, để tính giá trị cực đại cực tiểu đại lượng Vật lý, học sinh thường gặp phải khó khăn khơng biết phải giải từ đâu, dùng phương pháp gì, kiến thức để giải Học sinh thường giải mò, lần tìm kết quả, thời gian mà khơng đến thành công Cuối cùng, học sinh cảm thấy thất vọng, chán nản không muốn nghĩ tới tập dạng Do đó, để giải tập học sinh cần nắm vững số kiến thức toán học như: * Bất đẳng thức Côsi (a, b dương) (a, b, c dương) - Dấu xảy số - Khi tích hai số khơng đổi, tổng nhỏ hai số - Khi tổng hai số không đổi, tích hai số lớn hai số * Bất đẳng thức Bunhiacôpski Dấu xảy * Tam thức bậc hai - Nếu a > ymin đỉnh parabol - Nếu a < ymax đỉnh parabol download by : skknchat@gmail.com Tọa độ đỉnh: - Nếu - Nếu ; ( ) = phương trình: có nghiệm kép phương trình có hai nghiệm phân biệt * Giá trị cực đại hàm số sin cosin Ngoài một số bài toán không cần sử dụng các công thức toán mà từ lập luận ta có thể giải quyết được Ví dụ ta có thể vận dụng công thức cộng vận tốc và suy luận để giải bài toán cực trị Vì vậy đọc và phân tích đề ta phải lựa chọn cách giải nào ngắn gọn và hay để thực hiện 2.2 Thực trạng vấn đề trước áp dụng sáng kiến kinh nghiệm Ở mái trường với chất lượng đầu vào chưa thực cao việc học sinh gặp khó khăn với tập mức độ khó nêu điều dễ hiểu Chính mà kết khảo sát với 39 học sinh lớp 10A1 làm tập tìm giá trị cực đại, cực tiểu phần Cơ học cho kết hạn chế Cụ thể là: Mức độ nhận Chưa có Cịn phân vân Có hướng giải Giải thức vấn đề hướng giải tìm hướng chưa PP giải kết cụ thể Số lượng HS 14 13 10 2.3 Các sáng kiến kinh nghiệm giải pháp sử dụng để giải vấn đề Đứng trước thực trạng học sinh lớp đầu nhà trường gặp khó khăn với tập khó phần Cơ học Vật lí 10 Bản thân tơi giáo viên trực tiếp giảng dạy lớp nhận thức trách nhiệm cần phải làm để giúp em đơn giản hóa vấn đề Hóa giải băn khoăn học trị hành động thiết thực tìm giải pháp hữu hiệu để giải thành công tập cực trị chương trình Vật lí phổ thơng nói chung phần Cơ học Vật lí 10 nói riêng Áp dụng kiến thức tốn vào giải tập Vật lí phần cực trị cách linh hoạt Tôi giúp học sinh đơn giản hóa tập khó phần Cơ học Vật lí 10 cách tốt 2.3.1 Một số tập áp dụng 2.3.1.1 Bài toán áp dụng bất đẳng thức Côsi download by : skknchat@gmail.com Bài toán 1: Vật m1 chuyển động với vận tốc A đồng thời va chạm với vật m2 nằm yên Sau va chạm, m1 có vận tốc định tỉ số m1 để góc lệch lớn va chạm đàn hồi hệ xem hệ kín [1] Hướng dẫn giải: * Động lượng hệ trước va chạm: Cho m1 > m2, * Động lượng hệ sau va chạm: Vì hệ kín nên động lượng bảo tồn: Gọi Ta có: (1) Mặt khác, va chạm đàn hồi nên động bảo toàn: (2) Từ (1) (2) ta suy ra: Đặt Để Hãy xác Theo bất đẳng thức Cơsi Tích hai số không đổi, tổng nhỏ hai số download by : skknchat@gmail.com Vậy góc lệch cực đại Khi đó, Bài tốn 2: Trên đoạn đường thẳng AB dài s = 200m, một chiếc xe khởi hành từ A chuyển động nhanh dần đều với gia tốc a1 =1m/s2 sau đó chuyển động chậm dần đều với gia tốc có độ lớn a2 = 2m/s2 và dừng lại ở B Tính thời gian ngắn nhất để xe từ A đến B? [2] Hướng dẫn giải: Gọi s1, s2 là quãng đường xe hai giai đoạn ứng với gia tốc a1, a2 t1, t2 là thời gian xe hai giai đoạn ứng với gia tốc s1, s2 ta có: ; Tổng giời gian xe T= Áp dụng bất đẳng thức Cô si ta có: Để thời gian xe là ngắn nhất thì: Mặt khác s1 + s2 =200(2) suy s1= 66,67m, s2 = 33,33m Vậy t = 15,63 s 2.3.1.2 Bài toán áp dụng bất đẳng thức Bunhia Cơpski Bài tốn 1: Hai chuyển động AO BO hướng O với Khi khoảng cách hai vật cực tiểu d khoảng cách từ vật (1) đến O Hãy tính khoảng cách từ vật (2) đến O [3] Hướng dẫn giải: Gọi d1, d2 khoảng cách từ vật (1) vật (2) đến O lúc đầu ta xét (t = 0) A Áp dụng định lý hàm sin ta có: d1’ d download by : skknchat@gmail.com B d2’ O Vì nên ta có: Áp dụng tính chất phân thức ta có: Mặt khác, tacó: Vậy Khoảng cách hai vật dmin ymax với y = Áp dụng bất đẳng thức Bunhia Cơpski: ymax= Lúc đó: Vậy, khoảng cách từ vật hai đến O lúc là: d2’ = 90(m) Bài tốn 2: Cho hệ hình vẽ: Cho biết: Hệ số ma sát M sàn k2 Hệ số ma sát M m k1 Tác dụng lực lên M theo phương hợp với phương ngang góc tìm Fmin để m rời khỏi M Tính góc tương ứng? [4] download by : skknchat@gmail.com m M Hãy Hướng dẫn giải: y + Xét vật m: (1) Chiếu lên Ox: Fms21= ma Chiếu lên Oy: N1 – P1 = Fms21= k1.N1 = k1.mg O N1 = P1 Khi vật bắt đầu trượt thì a1 = k1g + Xét vật M: Chiếu lên trục Ox: Chiếu lên Oy: Ta có: Khi vật trượt Nhận xét: Fmin ymax Theo bất đẳng thức Bunhia Cơpski: Vậy Lúc đó: 2.3.1.3 Bài toán áp dụng tam thức bậc hai Bài toán 1: Một kiến bám vào đầu B cứng mảnh AB có chiều dài L dựng đứng download by : skknchat@gmail.com B A x cạnh tường thẳng đứng Vào thời điểm mà đầu B bắt đầu chuyển động sang phải với vận tốc khơng đổi v theo sàn ngang kiến bắt đầu bò dọc theo với vận tốc khơng đổi u Trong q trình bò thanh, kiến đạt độ cao cực đại sàn? Cho đầu A ln tì lên sàn thẳng đứng [5] Hướng dẫn giải: A Khi B di chuyển đoạn s = v.t kiến đoạn l = u.t Độ cao mà kiến đạt được: h với B Đặt X = t2 Với y = y tam thức bậc hai có a = - v < Nhận xét: Parabol ymax đỉnh Vậy độ cao mà kiến đạt : Bài tốn 2: Hai chiếc tàu biển chủn đợng với cùng vận tốc hướng tới điểm O hai đường thẳng hợp với một góc α = 600 Hãy xác định khoảng cách nhỏ nhất giữa hai tàu Cho biết ban đầu chúng cách O những khoảng cách là d1 = 60km và d2 = 40km [6] Hướng dẫn giải: Chọn hệ trục tọa độ không vuông góc hình vẽ Giả sử tàu A chuyển động Oy về O, tàu B chuyển động Ox về O Phương trình chuyển động của chúng lần lượt là: Tại thời điểm t khoảng cách giữa hai tàu là download by : skknchat@gmail.com A y y Thay (1), (2) vào (3) ta được: O Vế phải là một tam thức bậc hai có giá trị nhỏ nhất là B x 00 y Bài toán 3: Hai vật nhỏ chuyển động hai trục tọa độ vng góc Ox, Oy qua O lúc Vật thứ chuyển động trục Ox theo chiều dương với gia tốc 1m/s2 vận tốc qua O 6m/s Vật thứ hai chuyển động chậm dần theo chiều âm trục Oy với gia tốc 2m/s vận tốc qua O 8m/s Xác định vận tốc nhỏ vật thứ vật thứ hai khoảng thời gian từ lúc qua O vật thứ hai dừng lại [7] Hướng dẫn giải: Chọn mốc thời gian lúc vật qua O - Phương trình vận tốc vật thứ trục Ox: v1 = v01 + a1t = + t - Phương trình vận tốc vật thứ hai trục Oy: v2 = v02 + a2t = - + 2t - Khoảng thời gian vật thứ hai dừng lại: v2 = => t = 4s - Vận tốc vật thứ vật thứ hai là: O ⃗ v12=⃗ v −⃗ v Do v⃗1 vng góc với v⃗2 2 2 => v12 = √ v +v = √ (6+t ) +(−8+2 t ) x => v12 = √ 5t −20 t+100 Vế phải là một tam thức bậc hai có giá trị nhỏ nhất là −(−20) = (s) < (s) t= Vậy v12 có giá trị nhỏ t = 2s => (v12)min = √ 5.22−20.2+100≈¿ ¿ 8,94 (m/s) v1 , ⃗ v 12 )=α với Cos α = v1/v12 = 8/8,94 ¿ 0,895 Khi v1 = 8m/s, (⃗ => α = 26,50 - Vậy v12 đạt giá trị nhỏ 8,94m/s thời điểm t = 2s hợp với Ox góc 26,50 2.3.1.4 Bài toán áp dụng giá trị cực đại hàm số sin hàm số cosin 10 download by : skknchat@gmail.com X Bài toán 1: Hai vật chuyển động từ A B hướng điểm O với vận tốc Biết AO = 20km; BO = 30km; Góc ngắn chúng chuyển động? [8] Hướng dẫn giải: Xét thời điểm t: Vật A A’ Vật B B’ Khoảng cách d = A’B’ Hãy xác định khoảng cách A A’ O Ta có: với B B’ Nhận xét: dmin Bài tốn 2: Một ô tô chuyển động thẳng với vận tốc v = 54km/h Một hành khách cách ô tô đoạn a = 400m cách đường đoạn d = 80m, muốn đón tơ Hỏi người phải chạy theo hướng nào, với vận tốc nhỏ để đón tơ? [9] Hướng dẫn giải: Gọi C là vị trí gặp (2) A β Áp dụng định lí hàm số Sin cho tam giác ABC Ta có Suy : v2 có giá trị ( (1) B )max=1 vậy β = 900 d α 11 download by : skknchat@gmail.com (3) C Do đó (v2)min = 2.3.1.5 Bài toán dùng suy luận Bài tốn 1: Từ khí cầu cách mặt đất khoảng 15m hạ thấp với tốc độ v1 = 2m/s, từ khí cầu người ta phóng vật nhỏ theo phương thẳng đứng hướng lên với vận tốc đầu vo2= 18m/s mặt đất Tìm khoảng cách lớn khí cầu vật Bỏ qua ảnh hưởng khơng khí, lấy g = 10m/s [10] Hướng dẫn giải: Chọn trục toạ độ thẳng đứng chiều dương xuống Phương trình chuyển động khí cầu vật là: x1= 2t x2= -18t +5t2 Phương trình vận tốc khí cầu 1: v1= 2m/s (đ/k t ¿ 7,5s) Phương trình vận tốc vật 2: v2 = -18+10t (đ/k t ¿ 3s) Khi vật lên khoảng cách vật khí cầu ngày tăng, vật lên đên điểm cao đổi chiều chuyển đơng nhanh dần xuống, khoảng cách vật khí cầu tiếp tục tăng vận tốc vật đạt giá trị vận tốc khí cầu 2m/s Ta có: v2 = -18+10t = ⇒ t = 2s Khoảng cách: dmax = x1 - x2 = 2t - (-18t + 5t2) = 20m Bài toán 2: Hai xe chuyển động hai đường vng góc với nhau, xe A hướng tây với tốc độ 50km/h, xe B hướng Nam với tốc độ 30km/h Vào thời điểm xe A B cịn cách giao điểm hai đường 4,4km 4km tiến phía giao điểm Tìm khoảng cách ngắn giũa hai xe [11] Hướng dẫn giải: Xét chuyển động tương đối vật (1) so (2) ta có: ⃗v 12=⃗v +(−⃗v )=⃗v 1−⃗v Đoạn BH vng góc với đường thẳng chứa véc tơ vận tốc ⃗v 12 cách ngắn hai xe → dmin= BH α= v2 v1 = 0 →α=59 , β=31 dmin=BH= BI sin β = (B0-0I) sin β =(B0-0A.tan tan khoảng α ).sin β = 1,166km 12 download by : skknchat@gmail.com 2.4 Hiệu sáng kiến kinh nghiệm hoạt động giáo dục, với thân, đồng nghiệp nhà trường Sau áp dụng đề tài vào dạy học với đối tượng học sinh đầu qua thời gian ôn luyện, kết khảo sát 39 học sinh lớp 10A1 trở nên khả quan Qua khảo sát nhận thấy học sinh thật tiến rõ rệt, đặc biệt khơng cịn tình trạng mơ hồ với dạng tập cực trị Cụ thể kết khảo sát lần (sau áp dụng đề tài) là: Mức độ nhận Chưa có Cịn phân vân Có hướng giải Giải thức vấn đề hướng giải tìm hướng chưa PP giải kết cụ thể Số lượng HS 0 24 15 Đồng thời, sau đề tài áp dụng lớp 10A1 thu kết khả quan thầy giáo nhóm chun mơn tiến hành áp dụng phương pháp dạy học đề tài vào giải tốn cực trị ơn luyện THPT Quốc Gia Kết kì thi THPTQG năm học 2017 - 2018 có học sinh đậu đại học với điểm số cao em Trần Văn Anh, Lê Thị Na, Lê Lan Anh lớp 12A1 Kết luận, kiến nghị 3.1 Kết luận Bằng thực tế giảng dạy trường THPT, nhận thấy đề tài “Giúp học sinh sử dụng linh hoạt bất đẳng thức tam thức bậc hai vào toán cực trị phần Cơ học Vật Lí 10 THPT”, tìm giá trị cực đại, cực tiểu đại lượng vật lý nêu phát huy ưu điểm, cố cách làm tập Vật lý phần cực trị cho học sinh Đề tài áp dụng với 39 học sinh đầu lớp 10A1 bước đầu cho kết khả quan, bên cạnh phương pháp giải tốn đề tài mở rộng áp dụng ôn thi THPT Quốc Gia cho kết tích cực Vì 13 download by : skknchat@gmail.com tơi tin tưởng đề tài cịn phát triển, áp dụng thành công cho học sinh không lớp 10 mà 11 12 3.2 Kiến nghị Đây đề tài áp dụng để giải tốn tương đối khó Vật lý, với kiến thức cá nhân hạn chế, kinh nghiệm còn ít nên đề tài chỉ nghiên cứu một phần nhỏ của chương trình vật lí phở thơng, chắc chắn đề tài cịn thiếu sót định Chính vậy, tơi tha thiết kính mong quý thầy cô và các bạn đồng nghiệp trao đổi, góp ý chân thành để đề tài mở rợng, hồn thiện có tác dụng hữu hiệu dạy học học sinh đầu phạm vi rộng trường THPT nói chung Tơi xin chân thành cảm ơn! Xác nhận thủ trưởng đơn vị Thanh Hóa, ngày 15 tháng năm 2019 Tơi xin cam đoan sáng kiến kinh nghiệm viết, khơng chép nội dung người khác Người viết Trần Chung Anh 14 download by : skknchat@gmail.com Tài liệu tham khảo [1]: Tuyển tập các toán vật lý nâng cao; Tác giả: Nguyễn Danh Bơ [2], [5], [7], [11]: Bài tập vật lý sơ cấp toàn tập; Tác giả: Vũ Thanh Khiết [6], [8], [9]: Giải toán vật lý 10-11-12; Tác giả: Vũ Thanh Khiết [4]: Giải toán vật lý 10-11-12; Tác giả: Bùi Quang Hân [10]: Bài tập vật lý nâng cao toàn tập; Tác giả: Lưu Đình Tuân [3]: Giải bài tập vật lí THPT; Tác giả: Lê Nguyên Long 15 download by : skknchat@gmail.com DANH MỤC SÁNG KIẾN KINH NGHIỆM Đà ĐƯỢC HỘI ĐỒNG SÁNG KIẾN KINH NGHIỆM NGÀNH GIÁO DỤC VÀ ĐÀO TẠO HUYỆN, TỈNH VÀ CÁC CẤP CAO HƠN XẾP LOẠI TỪ C TRỞ LÊN Họ tên tác giả: Trần Chung Anh Chức vụ đơn vị công tác: Giáo viên Vật lý trường THPT Đặng Thai Mai TT Tên đề tài SKKN Cấp đánh giá xếp loại (Ngành GD cấp huyện/tỉnh; Tỉnh ) Giúp học sinh đơn giản hóa Ngành GD tỉnh tốn “Hộp đen” Thanh Hóa mạch điện xoay chiều thơng qua độ lệch pha Kết đánh giá xếp loại (A, B, C) C 16 download by : skknchat@gmail.com Năm học đánh giá xếp loại 2014 2015 ... bất đẳng thức tam thức bậc hai vào toán cực trị phần Cơ học Vật Lí 10 THPT? ??, tìm giá trị cực đại, cực tiểu đại lượng vật lý nêu phát huy ưu điểm, cố cách làm tập Vật lý phần cực trị cho học sinh. .. tính hệ thống Để góp phần cải thiện thực trạng trên, định thực đề tài ? ?Giúp học sinh sử dụng linh hoạt bất đẳng thức tam thức bậc hai vào toán cực trị phần Cơ học Vật Lí 10 THPT? ??, để nghiên cứu,... Áp dụng kiến thức tốn vào giải tập Vật lí phần cực trị cách linh hoạt Tôi giúp học sinh đơn giản hóa tập khó phần Cơ học Vật lí 10 cách tốt 2.3.1 Một số tập áp dụng 2.3.1.1 Bài toán áp dụng bất