1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phiếu bài tập về Tích phân Giải tích 12 Anh Sơn23963

20 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 859,63 KB

Nội dung

SCELL 2016 TÍCH PHÂN PHI U BÀI T P TÍCH PHÂN THEO D NG MƠN: GI I TÍCH 12 D NG 1: TÍCH PHÂN CÁC HÀM S 1, I   x (1  x) dx 2, I   x (x  1)5 dx 0 3, I   (1  2x)(1  3x  3x ) dx 4, I   x (1  x )6 dx 0 2x  dx x  I 7, x  3x  I dx x  9, I   dx x  6x  x2 dx 11, I    x x 1 dx 2x  3 5, 6, 8, I 13, I   dx x 2x   4x  dx x 5x   dx x 4x   I x dx 4x 10, I 12, x3 I dx x  16 14, x2 I dx x  7x  12 2 15, I 17, 16, x4 I   dx x 1 18, 3x I dx x  2x  1 20, dx 9x 6x   1 I  2 19, I I 1 dx 2 (x 1) (  x  2) 21, I 23, I ( 1 x 1 ) dx x2 x  2x  10x  I dx x 2x   dx 5 2x  8x  26 I   3x  dx x 1  x  dx 3 dx x 1 22, I 24, 2x  x  I dx x  x 3 dx (x  1)(x  3x  2) 26, I 28, I 27, 1 25, H UT ThuVienDeThi.com dx x (x 1)  SCELL 2016 TÍCH PHÂN x 29, I   dx (2x  1) 30, 4x  dx x  2x  x  I 31, 1 x2 I dx x x  32, 33, 3x  I dx x x 5x    34, I 35, (x  1)2 I dx (2 x 1)  36, (7x  1)99 I dx 101 (2x  1) 38, x7 I dx (1  x ) 2 x dx (x  1) 1 1 5x 37, I   dx ( x 4)  dx  x x I 39, I   dx 10 x(1 x  ) 41, I  1 dx x (1  x ) 43, 1 x2 I dx x  45, 1 x2 I dx 1 x 47, x7 I dx  x  2x 42,  x7 I dx x(1 x )  44, x 2001 I dx 1002 (1  x ) 46, x4 1 I   dx x 1 1 49, I  dx 4x dx 51, I   (x 1)  53, x3 I dx (x  1) 55, x4 1 I   dx x 1 1 48, x dx x x   I 1 2 x4 1  x(1  x ) dx 2 x I 3 40, x2 1 dx 50, I   x x   1 dx (x 4x 3)   52, I 54, I 56,  x5 I dx x(1 x )  dx 2 (4 x )  ThuVienDeThi.com SCELL 2016 TÍCH PHÂN D NG 2: TÍCH PHÂN CÁC HÀM S 1, 3, I   x  x dx 2, 7, I   x  x dx I   x  x dx 4, I x  x dx  6, x 1 dx 3x  I dx x 1 x I  dx x x 4 I  x3 1 x 17, I  x x 1 x3 dx I   (x  3) x  6x  dx 10, I 12, x 2 1 I dx  2x 14, x 16  x x 1 I3 dx 3x  16, 18, I I  27, I x 9x I  I  x 1 I x 4x 4x 2 dx dx dx x x 9 2 24, x  2x 3 22, dx  2 25, I I    x dx dx 23, 3x 20, dx 1 x2 x I dx 2x  1 21, dx I  2 19, 8, 2 15, I   x  x dx I  13, I   x (x  4)3 dx 11, I   x15  x dx 9, 5, VÔ T dx dx x 1 dx x 26, I   (1  x )3 dx 28, I  ThuVienDeThi.com 2 x 1 x dx SCELL 2016 29, I  TÍCH PHÂN x2 1 x2 31, 30, dx I 32, I   x  dx 2 I    x dx 34, I   4x  x  dx 37, 39, 41, 43, 45, 47, I  3 49, I I  2 53, 55, 57, x 4 dx x 38, I I I 40,  x4 dx x2 x2 dx x x 1 x dx x 1 44, 46, 48, x2 1 dx x2 I  1 50, dx x 1 dx I x 1  x I dx 2  x 1 x3 I dx x  1 x 1 I  dx 1  x   x I  1 (3  2x)  12x  4x x2 54, 56, dx 2 x  4x  13  I x 4 dx x  x3 I dx x I dx 4x  x x  2x  2x   1 2 42, 52, x 1 I 2 dx   x 1 x I dx 2x  2x x I dx 1  x 1 I dx x x   1 I  dx 3 x   (x  4)  51, 36, I  x2 I dx (x  1) x  1 x2 1 I dx x  I   3x  6x  1dx 1 35, 2  x  x dx 1 33, dx 58, I  ThuVienDeThi.com 1 x2 dx x2 2 dx SCELL 2016 TÍCH PHÂN 59, x I  60, dx 3x  9x  2x  I dx  2x  I dx 2x   4x  x2 1 dx I x 3x  2x  x  dx I x 1 x 1 I dx ) (1 2x   I   ( x  x )  x dx 2 1 61, 63, 65, 67, 69, 2x  3x  x 71, I x  x 1 73, I 75, (x  x ) I  x4  1  x  1 x 77, I 27  x 2 83, I 2  70, 72, dx 74, 76, 78, x )  x I   (x  1)3 2x  x dx  x ) (2   x ) 1 x x 1 x I dx x  x 3 dx I    x x x2 I  2 dx (x  1) x  I  x 1 dx dx x2 2( x  1)  x 1  x x 1 80, I   x4 (x  ) x  x x I  dx 85,  4x 82, I  84, 86, x  x  2015x dx x4 (3   x ) I dx 2x 1 x2 I dx  2x  x dx 2 3 dx x 1 x3 I dx 4x x dx I  2 ( x  1) x  1 I dx x  x 1 (1  68, dx dx I 66, dx x (1  64, dx x  x2 79, I   81, I 2 62, x2  x ThuVienDeThi.com dx SCELL 2016 TÍCH PHÂN D NG 3: TÍCH PHÂN CÁC HÀM S 1, 3, 5, 7, 9,  I   3tan x dx   2, 4, I   (2cot x  5) dx   6, I   sin x dx  I   cos x dx  I   cot x dx  8, I   (2cos x  3sin x) dx  2 11, 13, 15, 17, I   sin x.sin 2x.sin 3xdx  21, 10, 12, I   cos x.cos 4x dx 14, I   sin 2x(1  sin x) dx I     cos x cos x  cos xdx   I   tan xdx   I   tan x dx I    cos3 x sin x.cos5 xdx  I   sin x.tan xdx  16, I   sin x cos x(1  cos x) dx  18, 20, 22,  I   tan x  cot x  2dx  2   tan x  cotx  dx    19, I   I   cos2x(sin x  cos x)dx NG GIÁC  I   sin x.cos xdx  L I   cos5 x sin xdx  I   cot x dx   I  ThuVienDeThi.com tan x cos x  cos x dx SCELL 2016 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45,  I   dx  sin x  dx I cos x  I dx cos x  I dx cos x  4sin x dx I cosx   sin 2x dx  cos x I TÍCH PHÂN 24, 26, 28, 30, 32, 34,  sin x  cos x I dx sin x  cos x   sin x cos x  cos x dx sin x  I  I  cos x dx  5sin x  sin x I  cos x  sin x dx  sin 2x  I  dx  sin x cot x I  sin 2x.cos x dx  cos x I 36,  sin 2x  sin x dx  3cos x I 38,   2sin x I dx  sin 2x 40,  sin x I dx cos x 42,  sin x I dx  cos x  cos 2x dx   cos 2x I 44, 46, cos x dx  cos 2x  sin x I dx 2 (tan x  1) cos x  sin x dx I cos x  sin 2x dx  sin x I  sin 2x dx  cos x I  sin x I dx  (sin x 3) 0 sin 2x I  dx  (2  sin x) ThuVienDeThi.com SCELL 2016 47, 49, 51, TÍCH PHÂN    sin 2x  cos 2x dx cos x  sin x I   4sin x dx 48, I     cos x sin x.cos3 x I dx co s x  I  50,  dx  cos x.sin x I   sin x  9cos x dx   52, sin 3x dx  cos x I 53, 55, 57, 59, 61, 63, 65, 67, 69,  dx sin x cos x  I 54,  sin 2x dx 2 sin x  2cos x I 56,  sin x  sin x I dx cos 2x 58,  sin x dx  cos x I 60,  dx tan x  I  I  cos x cos x  62, 64, dx cos3 x I dx cos x  3cos x   dx  sin x  cos x I  sin x dx  sin x I 66, 68,  cos x cos x    I (  dx tan x  ) dx tan x  sin 2x  sin x dx co s3x  I  cos x dx  sin x I  4cos x  3sin x  dx 4sin x 3cos x   I 2 I   sin xdx   sin x dx 3cos x  I I  cos x   cos x  dx   70, tan x I  cos x dx sin x  c os x  I ThuVienDeThi.com SCELL 2016 71,  cos x dx  cos 2x I 73, 75, 77, I TÍCH PHÂN 2   72, sin x dx x 74, I dx  sin x 76,  dx I cos x  78,  cos x dx 79, I   (1 cos x)   81, I    cos x dx  cos x I  cos3 x I dx cos x   sin x I dx cos x  dx 2cos x  sin x  I 82,  cot x  tan x  2tan2x dx sin 4x  I   83, I   sin x sin x  dx  84, dx 2sin x  I  2 85, cos x dx cos x  I 80, sin x  cos x dx  cos x    I    sin x dx 86, I   (cos3 x  1)cos xdx  8cos x  87, I   sin x.(2   cos2x )dx   89, I sin 4x 88, 90, dx sin x  cos6 x I dx   sin x  cos x I  sin x dx  (sinx cos x) I  91, 93,  I    sin 2x  2cos xdx 92, 94,  sin 2x  dx sinx  cos x  dx sinx cos x  I  cos x  sin x dx  sin 2x I ThuVienDeThi.com SCELL 2016 95,  TÍCH PHÂN sin x I cos x  sin x   tan(x  ) dx I cos 2x 97,  99, tan x I cosx  cos x  101, 103, cos x dx 105, I   (1 cos x)   dx  ex 1, I   dx x e  e2x dx 3, I    x 1 0e ln dx 5, I   x e 1 dx 7, I   x 1 e e2x dx 9, I   x e 1 e x dx 11, I    x 1 0e I  e sin 2x I cos x  4sin x  3x 1 dx sin x dx cos  5sin x x cos x 100, 102, 104, 106,  tan x I dx cos 2x  cos 2x dx   (cos x si n x 3) I  I   cot x I ln I  SIÊU VI T e x  1dx 1 dx x e  ln ex 4, I 6, I  8, (e  1) x I 12, 14, dx dx 3 e I   2x dx x e e  (1  ex )2 I dx 2x e  x 10, I  e ThuVienDeThi.com dx sin x.cos x  sin x.sin( x  2, dx I D NG 4: TÍCH PHÂN CÁC HÀM S ln 96, 98, 3sin x  4cos x I dx 2 3sin x  4cos x   sin(x  ) dx I  2sinx cos x   13, dx  x dx  ) dx SCELL 2016 15, I TÍCH PHÂN e2x ln  dx e 1 ln ex 17, 19, I I 21, 23, x e e ex x ln  16, x dx 18, (e  1) e  x x dx e2 I ( 20, e 22, 1 )dx  ln x ln x ln x  ln x I dx x e ln x I dx x(ln x  1) I 24, 1 e I  dx 2x e  1 I  27, 29, I e2  31, ln x dx ln x 33, I  35, 37, 39, 41, 43, ( e x  2)2 x sin 2x dx  I   ln(x  x)dx e I   ln xdx 28, I e2 ln x  x dx e 32,  34, I   sin x.ln(1  cos x) dx I   ln(1  tan x)dx I   esin x sin x cos3 xdx dx  2 30, I   ln(x  x  1)  dx   1  2ln x dx  x 2ln x  ln( x   1) I dx x x    2 x  2 x I x dx x     3ln x ln x dx x I ln  e2 x dx 1  e  e ln x I  dx x  ln x ln 2e3x  e2 x I  dx x x e 4e   1 6x I x dx x x  3.6  2.4 ln e e I dx I   ln(  x  x)dx 3ln 26, 2x I   esin e 25,  e2x e  e tan x  I dx cos x 3e 4x x x 36, 38, 40, 42,  I   sin x.ln(cos x)dx 44, I   ln( x  a  x)dx 1 ThuVienDeThi.com SCELL 2016 TÍCH PHÂN D NG 5: TÍCH PHÂN T NG PH N 1, e I   ln xdx 2, I   ln(x  x)dx 3, 5, 7, 9,  I   x sin xdx 4, e I   (1  x)ln x dx e 8, I   x ln x dx I   x(2  ln x) dx 11,  I   e x sin xdx 13, I   e2x sin xdx  I   x sin x.cos xdx I   x ln(x  1) dx 10, 12, I   (x  x)ln x dx  I   e3x sin 4x dx 14, I   (x  1)2 ln x dx  2 15, 17, I   x sin x dx  I   x.tan xdx 19, 2x I   x ln(1  )dx x e ln x I  23,  (x  1)2 dx 21, 25, 27, 16, I   x cos x dx  x dx  cos 2x 18, I 20, I   x cos xdx  I   (1  x) e dx e 2 I   x 3e x dx e 6,  1 x I   x.ln dx  x x 2ex I dx (x  2) 0 22, I   x(e 2x  x  1)dx 1 e 24, 26, x 1 ln xdx = x I  ln(sin x) dx cos x  I 28, I   cos(ln x)dx ThuVienDeThi.com SCELL 2016 29, TÍCH PHÂN  I   esin x sin 2xdx 30,  I   esin 31, I e 32,  cos(ln x)dx 33, 35, 37, 39, 41, I ex a x 34, dx ln x dx x I  cosx 3x 1 I  e 38, I   ln( x   x)dx 40, e x dx 42, dx I x ln(x   x ) I 2, 4, 6, C BI T dx (e 1)(x 1)   1 I  x sin x I  x dx   I   ln( x  a  x)dx 1 1 2x )dx 7, I   x ln(  x 1 sinx  x I  dx x  1 8, dx x (x 1)(4 1)   1 I  10,   cosx ln(x  x  1)dx   13, I   12, I      x I   ( x  1) ln( )dx   x  dx  dx  I   ln(x  x  1)dx I x 1 2 cos2 x I   2x dx  e  11, x2 D NG 6: L P TÍCH PHÂN 9, 1 x x4 I  dx x  1  5, 36, ln( x  1) I dx x 1 3, I   cos x.ln(1  cos x) dx 1,   1 x I   x ln dx x  lnx I dx x    sin x sin x cos3 x dx I 1 x   14, sin x 1 x  x x sin x dx  cos x I ThuVienDeThi.com dx   (e 1)(x 3) x dx SCELL 2016 TÍCH PHÂN  x sin x 15, I   dx  sin x 17,  I   x sinxcos2 xdx 19, 21, 23, 25, 27, 29, 31, 33, 35, 16, x tan x dx 18, I   4cos x 20,  4sin x dx (sin x  cos x) I 22,  I   ( cos x  sin x )dx 24,  sin x I dx cos x sin x  26, 28, 30,  4sin 4x I dx sin 4x cos 4x   5sin x  4cosx dx (sin x cos x)  I  I   (cos3 x  sin x) dx  I   (cos 2014 x  sin 2014 x)dx  sin 2014 x I   2014 dx 2014 sin x cos x   sin 2014 3x I   2014 dx 2014 sin 3x cos 3x  32, I 1 x   x dx  2x 1  34, 2   tan (cosx) dx I   cos (sinx)   36, cos x sin x I dx sin x cos x  I cos x I dx 4 cos x sin x  0  2cos 2x I dx (sin 2x cos 2x)    3cos3 x I dx sin x cos x  x sin x I dx cos x   sin x I dx sin x  cos x   2  x sinx dx  I   ln(1  tan x)dx ThuVienDeThi.com SCELL 2016 TÍCH PHÂN T NG H P TÍCH PHÂN – CÁC BÀI TỐN THI 1, I   x  2x  x  dx 2, 1 3, 4, 3 5, 7, 9, x  3x  6, dx sin x  sin x dx  3cosx I (A-2005) sin 2x.cosx dx  cos x I 11, I  10 13, I  dx x  x 1 2x  I dx   2x 8, I   sin x.tanxdx (B-2005) 10, 17, (D-2005.DB) (B-2006.DB) I   (tanx  esin x cosx)dx (B-2005) 12, 14, dx (A-2006) 2x 4x    I  I (A-2007.DB)  (A-2008) dx (A-2006) (B-2006) 18, I   (x  2) e 2x dx (D-2006) e (D-2008) 20, I   x ln xdx (D-2007) I   (cos3 x  1) cos xdx  sin(x  ) dx 22, I   sin x  2(1  sin x  cos x)   (A-2009) 3 x  e x  2x e x I dx x  2e tan x I dx cos 2x  ln x dx 23, I   x 1) (  16, sin 2x cos x  4sin x ln I  x dx x 3 ln e  2e ln x 19, I   dx x (B-2009) 24, dx x e  I (D-2009) e 25,  21, (A-2005.DB) 15,   ln x dx x ln x  I   ln x dx e  e3 2 I    sin xdx e 4x  I I   cos x sin xdx I   ( x   x  ) dx  (A-2010) 26, ThuVienDeThi.com ln x dx  x(2 l n x) I (B-2010) SCELL 2016 TÍCH PHÂN e 27, I   (2x  ) ln xdx x 29, (D-2010)  1 I x sin x dx cos x  ln(x  1) 31, I   dx x 28, I  30, 35, I   x  x dx (A-2012) 32, 37, 41, 45, 47, 36, (x  1)2 I dx  x (D-2013) 38, ( x  x)e x I dx x x e  40, xe x I x dx (e  ) x 1  (1  sinx)1 cosx I   ln dx  cos x  x(2ln x  1) dx  x( x 1) I 51, 53, ln(sin x  cosx) dx cos x I 44, I (x  1)lnx dx x ln  x 1 e  1 x2 I    x  1dx    x 0  e (x  1)ln x  I dx  x ln x  42, 1 49, I   (D-2012) (A-2013) (B-2013) 2x  e x  x e x I  dx  ex 1  I   x(1  sin 2x)dx 34, 43,  x2 1 I   ln xdx x 39, (D-2011) e sin x dx  sin 2x I 4x  dx 2x   (B-2012)  I 33, x sin x  (x  1)cosx dx (Ax sin x  cos x  2011) (B-2011) x3 I dx x  3x   2x 46, I (2 48, I   sin 4x  4sin x  cos x  cos x  I    ln x dx  x  ln x  1 I dx ( x  1) (3x  1) dx x  9) 3.2  x  x2 x e 2x dx  50, (sin x  cosx )2 I dx 2 cos x(sin 2x  cos x ) 52,  ln x   3x ln x dx I     x  ln x e e ThuVienDeThi.com   x  x dx SCELL 2016 55, 57,  61, 63, 54, tan x.ln(cosx) I dx cos x sin x  cosx  dx sin x  2cos x  I 56, ln x dx x I  58, I dx   sin x.sin(x  ) 1  1 I   1  dx x 1x  67, I 60, 62, dx x  x 1 I  64, ln x  dx x 73, 66, I   (e2 x  x) e x dx sin 2x dx 4sin x cos 2x    77, cos x  sin x 70, 72, dx 74,  3cosx  sin x dx (sin x 2cos x)  I  I   cos3x.esin x dx ln(5  x)  x  x dx I x 1 (x  2)2 (2x  1) I   (x  1)  2x dx  cosx  cos3 x I dx c o s x  I   x 3cos( x )dx 76,   sin I ThuVienDeThi.com cos x x dx t dx (x   ) xcos x I dx sin x  sin x  cos2 x(1  e3x )dx   I I I  4 75, ln(1  ln x) I dx x 68, I     I   sin 2x.e  sin x dx 71,  69, 2x I dx x x   3 x 1  dx   cot x 65,  x  x2 I   xe   x3   e 59, TÍCH PHÂN SCELL 2016 TÍCH PHÂN x(ln x  1) 79, I   dx x  2x   2 I 80, x3  x I dx   x 3x 1 81, x2 I dx 2 (1  x ) 83, ln(x  x ) I dx x 5sin x  4cosx dx sin 2x  78, 1 85, I I  cosx cosx  cos xdx e 84,  2  I   x ln   87, 82, 86, x ln xdx  sin 2x dx  cos x I I  x tan(  ).sinx(1  sinx) dx 89, I   cos3 x  2x  2x  I dx 2x   1 91, 93, 88, 95, 92, I 97, 99, I ( e   1)  x dx  I   101, I    x  dx  x ln x   103, I  ln (cos x) 10  94, (x  2) x  dx x2 2sin x  cosx dx (sin x cos x)  I  xcos 2x dx (1 sin 2x)  96, I 98,  cos3 x  cosx  sinx  I  x dx cos x     100, x2 I dx (xsi n x c osx)  102, x  (x  2) ln x dx x(1  ln x) e dx dx x   (1  x )  e tan x x   sin 2x I dx 8sin x cos 2x    I   ln(3x  x )  ln x dx e2x dx x  x 1 2 ln x I  x  cos x   sin xdx   I   ln(1  cosx).sin xdx  2 90,  1 x dx 1 x ThuVienDeThi.com I SCELL 2016 105, 107, 109,  cosx dx x e (1 sin 2x)  I I e2 106, ln x  ln x  dx x2 I e (3x  2)  x  dx x    e (x 1) x xe  dx x x(e ln x)  I x  x ln x  x I e dx x 115, 117, x ln(x   x ) 1 x 119, I  114, dx x 1 dx 116, 118, ( x  1)ln x  2x  I dx x l n x  e I    x(2  x)  ln(4  x ) dx ln(1  x) dx x  120, 123, 127, 129, (1  2x)ln x  dx  x ln x  sin 2x  cos 2x dx  sin x cos x I I 2x  3x    x2 I dx x 122, x 9 dx I   x  1.sin x  1dx ln( x  3) I dx x2 124, x  2ln x dx (x  1) 126, dx 128, I  I   sin 4x ln(1  cos x)dx 131, ln(x  x  )  3x 3 I I I e 125, x  I  x e  dx x  0  x2 1 x I e dx (x 1)  x3 x ln( x  1)  x I dx x2 1 121, 1 x 1 e3 110, x 3e x  sin x I dx sin 2x  ln x  e x (e x  ln x) I dx x 1 e I  e 112, e x  (x  sin x)sin x dx sin x  sin x 108, x e  xln x  x ln x  I  dx  x(1 ln x) e x I I 2  e 113, 104,  x ln x.ln exdx e 111, TÍCH PHÂN 130, ThuVienDeThi.com x2 dx   (x 1) 3x I SCELL 2016 133, I ln  137, ex  e 3 x 135, TÍCH PHÂN 132, dx I   x ln(3x  x )dx 134, ln I   sin 2x  5cos x dx 5sin x cos 2x   136, I  xe x I dx x 2x   138,  ln x 141, I   dx x  3ln x I  143, I   (x  x) x  dx x  3x  dx 3cos x  sin x cos x  1  x(1  ln x) dx x(x  1) 140, I 142, x(ln x  ln x) I dx   1 x ln x e 147, 149, x ln x dx (ln x x 1)   I I 1  1  x   I  1 x2 144, e sin x  cos x  dx I x 157, I  e  dx   x  x  3x   152, I   x  ln x  x  x2 1 154,  ln x(ln x  2) dx x ln x x 1 dx x(x  ln x) I (x  1)sin(ln x)  x cos(ln x) dx x e2 I ln  156, I e 159, x dx x 1 x ln x I dx (ln x  1) e2 I 150, I  e 155, 148,  x2 1 146, 151, I   dx 1 x  x 1 153,  3ln x 2x  e  xdx x2  ln x  ln x I dx (ln x x 1)   1 I   1 e dx sin x dx I e 145, x 4x  e 10 x dx e x  e x  x3 139, x2 1 I dx  x 3x 1 158, I ThuVienDeThi.com dx (x  2)e2x  x (1  ex )  e x dx 2x x e  e 1 dx 1  x   x xe  e  1  dx 3 x x ex  ... x) dx x  120 , 123 , 127 , 129 , (1  2x)ln x  dx  x ln x  sin 2x  cos 2x dx  sin x cos x I I 2x  3x    x2 I dx x 122 , x 9 dx I   x  1.sin x  1dx ln( x  3) I dx x2 124 , x ...  cos x   2  x sinx dx  I   ln(1  tan x)dx ThuVienDeThi.com SCELL 2016 TÍCH PHÂN T NG H P TÍCH PHÂN – CÁC BÀI TỐN THI 1, I   x  2x  x  dx 2, 1 3, 4, 3 5, 7, 9, x  3x  6, dx sin...  I   sin x.ln(cos x)dx 44, I   ln( x  a  x)dx 1 ThuVienDeThi.com SCELL 2016 TÍCH PHÂN D NG 5: TÍCH PHÂN T NG PH N 1, e I   ln xdx 2, I   ln(x  x)dx 3, 5, 7, 9,  I   x sin xdx

Ngày đăng: 28/03/2022, 19:01

w