Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
234,09 KB
Nội dung
KINHTELUONGNANGCAO-BAI 2
BÀI 2 (tt)
MÔ HÌNH ĐỘNG
MÔ HÌNH TỰ HỒI QUY VÀ MÔ HÌNH CÓ TRỄ PHÂN PHỐI
3.Phương pháp biến đổi mô hình có trễ phân phối thành mô hình tự hồi quy.
3.1.Phương pháp Koyck ( Trễ hình học ).
Xét mô hình hồi quy có trễ phân phối vô hạn sau:
Y
t
= α + β
0
X
t
+ β
1
X
t-1
+ β
2
X
t-2
+ + u
t
(1)
Koyck giả thiết rằng mọi β
i
( i = 0,1, ) đều có cùng dấu và giảm dần theo cấp số
nhân:
β
k
= β
0
λ
k
k = 0,1,2, (2)
trong đó 0 < λ < 1
Biểu thức (2) có nghĩa là mỗi β kế tiếp sẽ nhỏ hơn β đứng trước đó tức là càng đi xa
về quá khứ thì ảnh hưởng của biến trễ lên biến Y
t
càng giảm dần.
Nhận xét:
+ Vì λ không âm nên phương pháp của Koyck loại bỏ được sự đổi dấu.
KINH TELUONGNANGCAO-BAI 2
+ Tổng β
k
là một số hữu hạn vì:
∑β
k
= ∑β
0
λ
k
= β
0
( 1/(1-λ)) (3)
Với giả thiết (2) thì mô hình (1) trở thành:
Y
t
= α + β
0
X
t
+ λβ
0
X
t-1
+ λ
2
β
0
X
t-2
+ +u
t
(4)
Mô hình (4) vẫn còn một số lớn các tham số cần ước lượng và tham số λ vẫn còn ở
dạng luỹ thừa nên chưa thể áp dụng được OLS.
Tuy nhiên có thể biến đổi (4) như sau:
Tại t-1 mô hình có dạng
Y
t-1
= α + β
0
X
t-1
+ λβ
0
X
t-2
+ + u
t-1
Nhân hai vế với λ
λY
t-1
= αλ + β
0
λX
t-1
+ λ
2
β
0
X
t-2
+ + λu
t-1
⇒ Y
t
- λY
t-1
= α( 1-λ) +β
0
X
t
+ (u
t
-λu
t-1
)
⇒ Y
t
= α( 1-λ) + β
0
X
t
+ λY
t-1
+ v
t
(5)
trong đó v
t
= u
t
- λu
t-1
Như vậy (4) tương đương với (5) trong đó chỉ còn phải ước lượng 3 tham số là α, λ và
β
0
.
KINH TELUONGNANGCAO-BAI 2
Nhận xét: Việc ước lượng mô hình (5) nảy sinh một số vấn đề sau:
• Mô hình (4) ở dạng mô hình có trễ phân phối song mô hình (5) lại là mô hình
tự hồi quy.
• Sự xuất hiện của Y
t-1
ở vế phải của (5) sẽ gây ra một số vấn đề về thống kê, cụ
thể là Y
t-1
có thể tương quan với u
t
, tức là vi phạm giả thiết của OLS.
• Trong mô hình (4) sai số ngẫu nhiên là u
t
song trong mô hình (5) sai số ngẫu
nhiên lại là v
t
. Vì thế u
t
có thể thoả mãn mọi giả thiết của OLS song v
t
lại có
thể vi phạm, cụ thể là có thể có tương quan chuỗi.
• Sự có mặt của Y
t-1
làm cho kiểm định Durbin - Watson không thực hiện được.
Ví dụ 1: Tệp sốliệu ch9bt2 gồm các sốliệu về mức đầu tư cho doanh nghiệp cho thiết bị
mới (Y) và doanh thu của doanh nghiệp (X). Hãy ước lượng mô hình:
Y
t
= α + β
0
X
t
+ β
1
X
t-1
+ β
2
X
t-2
+ + u
t
Biến
đổi về dạng (5) cho ta mô hình:
Y
t
= α( 1-λ) + β
0
X
t
+ λY
t-1
+ v
t
Dùng OLS hồi quy thu được kết quả sau:
Dependent Variable: Y
Method: Least Squares
KINH TELUONGNANGCAO-BAI 2
Date: 11/22/08 Time: 09:19
Sample(adjusted): 2 22
Included observations: 21 after adjusting endpoints
Variable Coefficie
nt
Std. Error t-Statistic Prob.
C -
22.93243
4.367183 -5.251081 0.0001
X 0.837749 0.052992 15.80895 0.0000
Y(-1) 0.036201 0.060438 0.598985 0.5566
R-squared 0.985634 Mean dependent
var
115.585
2
Adjusted R-
squared
0.984038 S.D. dependent var 56.8789
9
S.E. of regression 7.186239 Akaike info 6.91377
KINH TELUONGNANGCAO-BAI 2
criterion 7
Sum squared resid 929.5567 Schwarz criterion 7.06299
4
Log likelihood -
69.59466
F-statistic 617.470
1
Durbin-Watson
stat
1.365573 Prob(F-statistic) 0.00000
0
Từ kết quả trên hãy tìm lại các hệ số hồi quy ước lượng của mô hình gốc.
TÍNH α Căn cứ vào -22,93243=α(1-λ) . β
k
= β
0
λ
k
Ví dụ 2: Có sốliệu sau về tiêu dùng cá nhân theo đầu người và thu nhập khả dụng theo
đầu người của Mỹ ( Đơn vị: USD) giai đoạn 1970 - 1991.
Năm TD TN NĂM TD TN
1970 8842 9875 1981 10770 12156
1971 9022 10111 1982 10782 12146
1972 9425 10414 1983 11179 12349
1973 9752 11013 1984 11617 13029
1974 9602 10832 1985 12015 13258
KINH TELUONGNANGCAO-BAI 2
1975 9711 10906 1986 12336 13552
1976 10121 11192 1987 12568 13545
1977 10425 11406 1988 12903 13890
1978 10744 11851 1989 13029 14005
1979 10876 12039 1990 13044 14068
1980 10746 12005 1991 12824 13886
hãy hồi quy mô hình (5) và phân tích kết quả nhận được.
3.2. Một vài dạng khác của phép biến đổi Koyck.
.
1. Mô hình kỳ vọng thích nghi.
Sử dụng cách tiếp cận của Koyck, Cagan và Friedman đã xây dựng mô hình sau:
Y
t
= β
0
+ β
1
X
t
* + u
t
(6)
trong đó: Y
t
là lượng cầu về tiền
X
t
* là lãi suất cân bằng, hoặc tối ưu, hoặc kỳ vọng dài hạn.
Như vậy mô hình (6) phát biểu rằng lượng cầu về tiền là hàm số của lãi suất kỳ vọng.
KINH TELUONGNANGCAO-BAI 2
Vì X
t
* không quan sát trực tiếp được nên nó được tính toán dựa trên giả thiết là mức
độ điều chỉnh của lãi suất kỳ vọng từ năm t-1 đến năm t tỷ lệ với mức chênh lệch giữa lãi
suất quan sát được ở năm t và lãi suất kỳ vọng ở năm trước đó, tức là:
X
t
* - X
t-1
* = γ (X
t
- X
t-1
*) (7)
trong đó: 0 < γ ≤ 1 và gọi là hệ số kỳ vọng.
lúc đó:
X
t
* = γX
t
+ ( 1 - γ )X
t-1
* (8)
Tức là X
t
* là trung bình có trọng số của X
t
và X
t-1
* với các trọng số tương ứng là γ và 1 -
γ.
Thay (8) vào (6) ta có :
Y
t
= β
0
+ β
1
( γX
t
+ ( 1 - γ )X
t-1
*) + u
t
= β
0
+ β
1
γX
t
+ β
1
( 1 - γ )X
t-1
* + u
t
(9)
Cho (6) trễ đi một kỳ và nhân với ( 1 - γ) sau đó thế vào (9) ta thu được mô hình sau:
Y
t
= β
0
+ β
1
γX
t
+ ( 1 - γ )Y
t-1
+ u
t
- ( 1 - γ )u
t-1
⇒ Y
t
= β
0
+ β
1
γX
t
+ ( 1 - γ )Y
t-1
+ v
t
(10)
trong đó v
t
= u
t
- ( 1 - γ )u
t-1
Dễ thấy (10) cũng có dạng tương tự như (5).
KINH TELUONGNANGCAO-BAI 2
Ví dụ: Xét mô hình ở mục trước như mô hình kỳ vọng thích nghi, từ đó tìm giá trị của γ.
Theo mô hình kỳ vọng thích nghi, ta có:
Y
t
= β
0
+ β
1
X
t
* + u
t
Trong đó Y là mức đầu tư của doanh nghiệp
X
*
là doanh thu kỳ vọng
Biến đổi về dạng (10):
Y
t
= β
0
+ β
1
γX
t
+ ( 1 - γ )Y
t-1
+ v
t
Dùng OLS hồi quy ta cũng thu được kết quả như ở trên,
Từ đó suy ra γ.
.
Mô 2. Mô hình hiệu chỉnh bộ phận.
Marc Nerlov xây dựng mô hình sau:
Y
t
*
= β
0
+ β
1
X
t
+ u
t
(11)
Trong đó Y
t
*
là lượng vốn mong muốn hay lượng vốn cân bằng dài hạn,
X
t
là sản lượng.
Vì Y
t
*
không quan sát được trực tiếp nên Nerlov giả thiết rằng:
Y
t
- Y
t - 1
= δ ( Y
t
*
- Y
t - 1
) (12)
KINH TELUONGNANGCAO-BAI 2
Trong đó 0 < δ ≤ 1 được gọi là hệ số hiệu chỉnh.
Y
t
- Y
t - 1
là thay đổi thực tế.
Y
t
*
- Y
t - 1
là thay đổi kỳ vọng.
Từ đó Y
t
= δ Y
t
*
+ ( 1 - δ ) Y
t - 1
(13)
Tức là Y
t
là trung bình có trọng số của Y
t
*
và Y
t - 1
.
Thay (11) vào (13) ta được:
Y
t
= δ [β
0
+ β
1
X
t
+ u
t
] + ( 1 - δ)Y
t-1
= δβ
0
+ δβ
1
X
t
+ ( 1 -δ) Y
t-1
+ δu
t
(14)
Mô hình (14) gọi là mô hình hiệu chỉnh bộ phận và có thể gọi là hàm cầu ngắn hạn
về vốn.
Khi đã ước lượng được (14) và thu được ước lượng của δ thì có thể rút ra hàm cầu dài
hạn về vốn bằng cách chia δβ
0
và δβ
1
cho δ và bỏ đi số hạng trễ Y
t-1
.
Ví dụ: Xét mô hình ở mục trước như mô hình hiệu chỉnh bộ phận và tìm δ với Y
*
là
mức đầu tư mong đợi và X là doanh thu của doanh nghiệp.
.
Kế 3. Kết hợp các mô hình kỳ vọng thích nghi và mô hình hiệu chỉ chỉnh bộ phận.
KINH TELUONGNANGCAO-BAI 2
Xét mô hình:
Y
t
*
= β
0
+β
1
X
t
*
+ u
t
(15)
Trong đó: Y
t
*
là lượng vốn mong muốn,
X
t
*
là sản lượng kỳ vọng.
Vì cả Y
t
*
và X
t
*
đều không thể quan sát trực tiếp, ta sử dụng cơ chế hiệu chỉnh bộ
phận đối với Y
t
*
và mô hình kỳ vọng thích nghi đối với X
t
*
sẽ thu được mô hình sau:
Y
t
= β
0
δγ + β
1
δγX
t
+ [ (1 -γ) + ( 1 -δ)]Y
t-1
- (1 - δ)(1 - γ)Y
t-2
+ [δu
t
- δ(1 -γ)u
t-1
]
= α
0
+ α
1
X
t
+ α
2
Y
t-1
+ α
3
Y
t-2
+ v
t
(16)
T
ro trong đó v
t
= δ[ u
t
- (1 - γ)u
t-1
]
Ví dụ: Xét mô hình ở mục trước với các biến:
Y
*
là vốn đầu tư mong đợi
X
*
là doanh thu mong đợi của doanh nghiệp
[...]... công cụ Liviatan đề nghị dùng Xt-1 làm biến biến công cụ cho Yt-1 Lúc đó dùng OLS trực tiếp cho (21) thu đượ được hệ phương trình chuẩn sau: α0n + α1∑Xt + α2∑Yt-1 = ∑Yt α0∑Xt + α1∑Xt2 + α2∑XtYt-1 = ∑XtYt α0∑Yt-1 + α1∑XtYt-1 + α2∑Yt-12 = ∑YtYt-1 sẽ được thay bằng: α0n + α1∑Xt + α2∑Yt-1 = ∑Yt α0∑Xt + α1∑Xt2 + α2∑XtYt-1 = ∑XtYt (22) α0∑Xt-1 + α1∑XtXt-1 + α2∑Xt-1Yt-1 = ∑YtXt-1 Liviatan đã chứng minh được... ∑βi+1Xt-i + λβkXt-k + λ2βkXt-k-1 + + ut (17) Sử dụng phương pháp như đã làm với (4) thu được mô hình sau: Yt = β0( 1- ) + β1Xt + ∑(βi+1 - λβi)Xt-i λYt-1 + (ut - ut-1) Tuy nhiên (18) có thể có đa cộng tuyến vì có chứa k giá trị trễ a kế tiếp nhau của X b Mô hình có thể có nhiều biến giải thích mà chúng đều có b (18) Yt = β0 + βX1t + λβ1X1t-1 + λ2β1X1t-2 + + β2X2t + λβ2X2t-1 + λ2β2X2t-2 + + ut trễ phân phối... δu t Với sốliệu của UK thời kỳ 196 4- 1 967 thu được kết quả sau: ln M t = −2.2565 − 0.28108 ln Rt + 0.688 64 ln Yt + 0. 749 00 ln M t −1 Từ kết quả trên suy ra hệ số hiệu chỉnh δ = 0,251 tức là có sự khác biệt giữa mong muốn và thực tế về nhu cầu tiền mặt trong mỗi kỳ hạn Kết quả ước lượng cũng cho ước lượng ngắn hạn của nhu cầu tiền theo các nhân tố Hệ số co dãn ngắn hạn về cầu tiền theo lã KINH TE LUONG... có thể chứng minh được rằng: KINH TELUONG NANG CAO-BAI 2 Cov(Yt-1, ut - ut-1) = - σ2 * Mô hình (10) cũng tương tự Vì vậy nếu áp dụng phương pháp OLS cho các mô hình (5) và (10) thì các ước lượng thu được sẽ là các ước lượng chệch và không vững * Đối với mô hình ( 14) thì do vt = δut (0 < δ ≤ 1) nên nếu ut thoả mãn mọi giả thiết của OLS thì vt cũng thoả mãn Vì thế các ước lượng OLS vãn là vững ( mặc... + α1Xt + α2Yt-1 + vt (21) Do Yt-1 có tương quan với vt nên nếu loại trừ được sự tương quan này thì có thể áp dụng phương pháp OLS để thu được các ước lượng vững Liviatan đã đề xuất phương pháp biến công cụ như sau: Giả sử tìm được một xấp xỉ Zt-1 nào đó cho Yt-1 thoả mãn các điều kiện sau: Tư + tương quan chặt chẽ với Yt-1 *K + không tương quan với vt KINH TELUONG NANG CAO-BAI 2 Z Zt-1 được gọi là... mô hình sau: Yt = ( 1- )β0 + β1X1t + β2X2t + λYt-1 + (ut - λut-1) (20) KINH TELUONG NANG CAO-BAI 2 Tức là (20) tương tự như (5) ước 6 Ước lượng mô hình tự hồi quy 5.1 6.1 Phép biến đổi Koyck và các giả thiết của OLS Từ phép biến đổi Koyck ta thu được các mô hình (5) (10) và ( 14) Về thực chất đó là các mô hình tự hồi quy và có thể ký hiệu chu chung là: Yt = α0 + α1Xt + α2Yt-1 + vt (21) Đặc điểm... NANGCAO-BAI 2 suất tiền gửi là -0 ,281 và theo thu nhập là 0,689 Từ kết quả trên có thể suy ra hàm cầu tiền dài hạn Mở P 5 Mở rộng mô hình của Koyck Phương pháp của Koyck có thể mở rộng theo hai hướng: a.Thay vì giả thiết các hệ số giảm ngay lập tức có thể giả giảm theo cấp số nhân thiết rằng các hệ số hồi quy chỉ bắt đ bắt đầu từ trễ thứ k Lúc đó mô hình có dạng: Yt = β0 + ∑βi+1Xt-i + λβkXt-k +... một số giả thiết của OLS có thể bị vi phạm do đó không thể áp dụng trực tiếp phương pháp OLS Thật vậy, giả sử ut thoả mãn mọi giả thiết của OLS, tức là E(ut) = 0 ∀t Var(ut) = σ2 Cov(ut, ut+s) = 0 ∀t ∀s≠0 song ở mô hình (21) các vt không thừa kế được các tính chất này * Trong mô hình (5) thì vt = ut - λut-1 do đó E(vt , vt-1) = - λσ2 ≠ 0 Mặt khác biến giải thích Yt-1 tương quan với vt thông qua ut-1.. .KINH TELUONG NANG CAO-BAI 2 4 Ví dụ: Mô hình cầu tiền Giả sử nhu cầu tiền mặt được cho bởi hàm: M* =α tβ1Yβ2eut R t t Trong đó M t* là nhu cầu tiền cân bằng thực tế, Rt là lãi suất tiền gửi dài hạn và Yt là thu nhập quốc dân Lấy loga ta có: ln M t* = ln α + β 1 ln Rt + β 2Yt + u... được thay bằng: α0n + α1∑Xt + α2∑Yt-1 = ∑Yt α0∑Xt + α1∑Xt2 + α2∑XtYt-1 = ∑XtYt (22) α0∑Xt-1 + α1∑XtXt-1 + α2∑Xt-1Yt-1 = ∑YtXt-1 Liviatan đã chứng minh được rằng các ước lương thu được từ (22) là các ước lượng vững Hạn chế: Có thể dẫn đến đa cộng tuyến . + β
1
δγX
t
+ [ (1 - ) + ( 1 - )]Y
t-1
- (1 - δ)(1 - γ)Y
t-2
+ [δu
t
- δ(1 - )u
t-1
]
= α
0
+ α
1
X
t
+ α
2
Y
t-1
+ α
3
Y
t-2
+ v
t
(16)
T
ro. λu
t-1
⇒ Y
t
- λY
t-1
= α( 1- ) +β
0
X
t
+ (u
t
- u
t-1
)
⇒ Y
t
= α( 1- ) + β
0
X
t
+ λY
t-1
+ v
t
(5)
trong đó v
t
= u
t
- λu
t-1
Như vậy (4)