1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Kinh tế lượng nâng cao - Bài giảng số 6 pdf

14 676 11

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 319 KB

Nội dung

BÀI 3 MÔ HÌNH NHIỀU PHƯƠNG TRÌNH 1. Đặt vấn đề Trong các mô hình một phương trình ta luôn xác định các biến giải thích và biến phụ thuộc một cách hết sức rõ ràng và luôn coi như các yếu tố không có trong mô hình tác động đến biến phụ thuộc là không có tính hệ thống. Điều đó thể hiện trong các mô hình nhờ giả thiết các sai số U i có trung bình bằng không. Trong nhiều hệ thống kinh tế, có nhiều biến phụ thuộc cùng tồn tại và tác động qua lại với nhau. Lúc đó phải xây dựng và ước lượng các mô hình nhiều phương trình để mô tả các mối quan hệ đó. 2. Dạng cấu trúc và dạng rút gọn của các mô hình nhiều phương trình. 2.1. Hệ phương trình cấu trúc. Ví dụ 1. Xét các phương trình sau biểu diễn cầu và cung về gạo ( Mô hình cân bằng riêng): Hàm cầu: Q dt = α 1 + α 2 P t + α 3 Y t + u t (1) Hàm cung: Q st = β 1 + β 2 P t + β 3 R t + v t (2) Q dt = Q st (3) Trong đó: Q dt và Q st là cầu và cung về gạo. P t là giá gạo. Y t là thu nhập. R t là lượng mưa. u t và v t là các sai số ngẫu nhiên phản ánh các nhân tố khác có ảnh hưởng đến cầu và cung về gạo. Các phương trình (1) và (2) gọi là các phương trình hành vi vì chúng được xác định bằng hành vi của các tác nhân kinh tế. Phương trình (3) là điều kiện cân bằng, qua đó xác định mức giá cân bằng và lượng gạo được giao dịch trên thị trường. Như vậy hệ phương trình đồng thời nói trên bao gồm hai phương trình hành vi và một điều kiện cân bằng. Các phương trình (1) (2) và (3) tạo nên hệ phương trình cấu trúc của mô hình nhiều phương trình cung cầu. Phương trình cấu trúc là phương trình thể hiện quan hệ của các biến kinh tế thiết lập từ các quan điểm, định nghĩa và các giả thiết cho trước. Các hệ số hồi quy α và β gọi là các tham số cấu trúc. Vì giá và lượng gạo giao dịch được xác định một cách đồng thời qua mô hình và có tác động qua lại với nhau nên chúng được gọi là các biến nội sinh (Endogenous Variables ), còn thu nhập và lượng mưa không được xác định qua mô hình mà được cho trước từ bên ngoài mô hình nên chúng được gọi là các biến ngoại sinh ( Exogenous variables). Chú ý rằng trong các mô hình một phương trình người ta thường dùng thuật ngữ biến phụ thuộc và biến giải thích còn đối mô hình nhiều phương trình thì các thuật ngữ đó không còn thích hợp nữa. Chẳng hạn trong phương trình (1) nói trên giá là biến giải thích nhưng không phải là biến ngoại sinh. Với mô hình ba phương trình được xác định như trên ta có thể đặt: Q dt = Q st = Q t Và rút gọn mô hình xuống còn hai phương trình. Như vậy mô hình chỉ còn hai phương trình với hai biến nội sinh là P t và Q t và ba biến ngoại sinh là hệ số chặn, Y t và R t . Số phương trình của hệ ( cũng là số biến nội sinh) ký hiệu là M và số biến ngoại sinh ký hiệu là K. Ví dụ 2. Xét mô hình kinh tế vĩ mô sau đây: C t = α 1 + α 2 DY t + α 3 DY t-1 + u t (4) I t = β 1 + β 2 Y t + β 3 Y t-1 + v t (5) DY t = Y t - T t (6) Y t = C t + I t + G t (7) Trong đó C t là tiêu dùng, I t là đầu tư, Y t là GNP, G t là tiêu dùng của chính phủ, T t là tổng mức thuế, DY t là thu nhập khả dụng. Phương trình (6) xác định DY t là GNP trừ thuế, như vậy nó là một đồng nhất thức. Phương trình (7) là điều kiện cân bằng. Các phương trình (4) và (5) là phương trình hành vi. Như vậy mô hình gồm bốn phương trình cấu trúc với bốn biến nội sinh là Y t , C t , I t và DY t ( M = 4). Biến DY t-1 là thu nhập khả dụng ở kỳ trước, ở thời điểm t nó đã được cho trước giống như Y t-1 nên có thể xem như biến ngoại sinh. Vậy mô hình có năm biến ngoại sinh là G t , T t , Y t-1 , DY t-1 và hệ số chặn ( K = 5). Trong các hệ phương trình cấu trúc còn có thể có cả các phương trình công nghệ, chẳng hạn có thể thêm vào mô hình kinh tế vĩ mô nói trên hàm sản xuất trong đó tổng lượng cung Q phụ thuộc vào vốn K và lao động L. Như vậy hệ phương trình cấu trúc có thể bao gồm các phương trình hành vi, phương trình công nghệ, các điều kiện cân bằng và các đồng nhất thức. Ví dụ 3: Mô hình cân bằng thị trường hàng hóa ( Mô hình IS) vĩ mô: Hàm tiêu dùng: C t = β 0 + β 1 Y dt 0 < β 1 < 1 Thuế: T t = α 0 + α 1 Y t 0 <α 1 < 1 Đầu tư: I t = γ 0 + γ 1 r t Y dt = Y t - T t G t = G 0 Y t = C t + I t + G t Với: Y là thu nhập quốc dân C là tiêu dùng của đân cư I là đầu tư thuần túy G 0 là mức tiêu dùng của chính phủ ( đã ấn định) T là thuế Y d là tiêu dùng khả dụng R là lãi suất tiền gửi Ví dụ 4: Mô hình cân bằng thị trường tiền tệ ( Mô hình LM) Là một vế của mô hình kinh tế vĩ mô IS-LM: Hàm cầu tiền mặt: M t d = α 0 + α 1 Y t - α 2 r t Hàm cung tiền mặt: M t s = M 0 M t d = M t s Y t = a 0 + a 1 M 0 + a 2 r t Với các mô hình trên hãy xác định tính chất của từng phương trình và xét xem biến nào là nội sinh, biến nào là ngoại sinh.? 2.2. Hệ phương trình rút gọn. Trở lại mô hình (1) - (3). Giải các phương trình (1) và (2) theo P ta thu được hệ thức sau trong đó P là mức giá cân bằng: P t = π 1 + π 2 R t + π 3 Y t + ε 1t (8) Q t = π 4 + π 5 R t + π 6 Y t + ε 2t (9) Trong đó: 22 11 1 β−α α−β =π 22 3 2 β−α β =π 22 3 3 β−α α− =π 22 2112 4 β−α βα−βα =π 22 32 5 β−α βα =π 22 32 6 β−α αβ− =π (10) trong đó ε 1t và ε 2t là các sai số ngẫu nhiên mới phụ thuộc vào u t và v t . Các phương trình (8) và (9) chỉ biểu diễn sự phụ thuộc của một biến nội sinh vào các biến ngoại sinh của mô hình và vế phải của chúng không còn biến nội sinh nữa. Các phương trình trên được gọi là các phương trình rút gọn, còn các hệ số π được gọi là các hệ số rút gọn. Như vậy phương trình rút gọn là phương trình mà trong đó mỗi biến nội sinh chỉ có mặt trong một phương trình với tư cách là biến phụ thuộc. Nó cho phép sử dụng các kỹ thuật kinh tế lượng để ước lượng trực tiếp các tham số. Các tham số trong mô hình rút gọn thường là hàm số của các tham số cấu trúc. Các phương trình rút gọn nói chung chứa sai số ngẫu nhiên của tất cả các phương trình của hệ phương trình cấu trúc. 3. Hậu quả của việc bỏ qua tính đồng thời. Giả sử ta sẽ sử lý mỗi phương trình của hệ nhiều phương trình một cách riêng rẽ, tức là xem mỗi phương trình là một mô hình một phương trình và ước lượng các tham số của nó bằng phương pháp OLS. Lúc đó các ước lượng thu được sẽ có những tính chất gì? Xét mô hình kinh tế vĩ mô sau đây ( Mô hình Keynes): Hàm tiêu dùng: C t = α + βY t + u t 0 < β < 1 (11) Hàm thu nhập: Y t = C t + I t (12) Trong đó C t là tiêu dùng, Y t là thu nhập, I t là đầu tư, u t là sai số ngẫu nhiên. Phương trình (11) tương tự như hàm tiêu dùng. Phương trình (12) là điều kiện cân bằng. Trong mô hình trên u t thoả mãn mọi giả thiết của OLS, I t là biến ngoại sinh và cũng không tương quan với u t . Các biến nội sinh là C t và Y t . Thay Y t từ (12) vào (11) và giải theo C t ta có dạng rút gọn của C t : C t = β α −1 + β β −1 I t + β −1 t u (13) Tương tự thay C t từ (13) vào (12) và giải theo Y t ta thu được dạng rút gọn của Y t : Y t = β α −1 + β −1 1 I t + β −1 t u (14) Nếu ta bỏ qua tính đồng thời của hệ (11) (12) và ước lượng (11) như một mô hình đơn lẻ thì có thể thấy ngay là sẽ thu được các ước lượng chệch. Thật vậy theo giả thiết của OLS thì E(u t ) = 0 và E(u t ,Y t ) = 0 Song từ (14) thấy ngay rằng Y t phụ thuộc vào u t do đó nếu áp dụng OLS thì sẽ cho các ước lượng chệch. Điều đó cũng đúng với các mô hình nhiều phương trình hơn. Tính đồng thời ám chỉ rằng các biến nội sinh có mặt trong vế phải của phương trình sẽ tương quan với sai số ngẫu nhiên của phương trình đó làm cho các ước lượng OLS bị chệch. Ngoài ra còn có thể chứng minh được rằng các ước lượng thu được cũng không vững, tức là sẽ không hội tụ về giá trị thực cần ước lượng khi n → ∞. 4. Vấn đề định dạng. 4.1. Khái niệm. Trở lại mô hình cung cầu về gạo. Dạng rút gọn (8) và (9) biểu diễn gía và cung, cầu như các hàm của thu nhập và lượng mưa. Vì các biến ngoại sinh không tương quan với sai số ngẫu nhiên nên có thể áp dụng OLS để thu được các ước lượng không chệch, vững và hiệu quả nhất cho các tham số của hệ phương trình rút gọn ( các π). Vậy từ đó có thể tìm được các ước lượng vững cho các tham số của các phương trình cấu trúc ( α và β ) hay không? Sau khi đã tìm được ước lượng cho các tham số của phương trình rút gọn và quay trở lại các tham số của phương trình cấu trúc thì có thể xảy ra một trong ba trường hợp sau đây: • Từ các tham số của phương trình rút gọn không thể tìm được các tham số của phương trình cấu trúc. • Từ các tham số của phương trình rút gọn tìm được các giá trị duy nhất của các tham số của phương trình cấu trúc. • Từ các tham số của phương trình rút gọn tìm được vô số giá trị của các tham số của phương trình cấu trúc. Vấn đề định dạng được hiểu là từ các tham số của phương trình rút gọn có thể tìm được các tham số của phương trình cấu trúc hay không? Trường hợp thứ nhất, phương trình gọi là không định dạng được ( Underidentification) Trường hợp thứ hai, phương trình gọi là định dạng đúng ( Exact Identification) Trường hợp thứ ba, phương trình gọi là định dạng cao hay vô định ( Overidentification) Sau đây ta sẽ xét một số mô hình cung cầu để minh hoạ cho các tình huống trên. Mô hình 1. Xét mô hình cung cầu gạo sau: Q D t = α 1 + α 2 P t + u 1t (Phương trình cầu) Q S t = β 1 + β 2 P t + u 2t (Phương trình cung) Q dt = Q st (điều kiện cân bằng) Nhóm theo Pt Mô hình rút gọn có dạng: P t = π 1 + ε t 22 11 1 β βα α π − − = 2t 1t 22 uu t ε α β − = − Trong đó: Thay p t vào hàm cung hoặc hàm cầu, ta được: Q t = π 2 + w t Trong đó: π 2 = 22 1221 β β β − − α α α ; w t = 22 1t22t2 β α u βu α − − Ở mô hình cung - cầu ban đầu ta có bốn hệ số cấu trúc: β 1 , β 2 , α 1 và α 2 . Ở dạng rút gọn ta chỉ có hai hệ số - hai hệ số chặn (giá trị trung bình của p và Q). Từ ước lượng của hai hệ số này, ta không thể tìm được ước lượng của bốn hệ số. Để tìm được ước lượng của bốn hệ số ta cần phải có bốn phương trình. Như vậy, Cả hàm cung lẫn hàm cầu đều không định dạng được vì từ các tham số của các phương trình rút gọn không thể tìm được các tham số của các phương trình cấu trúc. Mô hình 2. Ta cải biên mô hình 1 thành mô hình sau, trong đó có thêm một biến ngoại sinh R. Dạng cấu trúc của mô hình là: Q dt = α 1 + α 2 P t + u 1t Q st = β 1 + β 2 P t + β 3 R t + u 2t Q đt = Q st Trong đó R t là lượng mưa. Dạng rút gọn là: P t = π 1 + π 2 R t + v t Q t = π 3 + π 4 R t + w t 22 11 1 β−α α−β =π ; 22 3 2 β−α β =π ; 22 1212 3 β−α αα−βα =π ; 22 32 4 β−α β β =π Khi dùng phương pháp bình phương nhỏ nhất ước lượng các tham số trong các phương trình rút gọn ta nhận được các giá trị π 1 , π 2 , π 3 , π 4 . Thay vào hàm cầu, ta nhận được: α 2 =π 4 /π 2 và α 1 = π 1 π 4 /π 2 ; tuy nhiên, không thể xác định được các tham số của hàm cung một cách duy nhất. Một thực tế là ta chỉ có bốn giá trị đã biết mà phải xác định năm tham số chưa biết, thì nói chung là bài toán không có nghiệm duy nhất. Với mô hình này, hàm cầu hoàn toàn xác định (định dạng đúng), còn hàm cung thì không. Lý do hàm cầu xác định chính là đã có thêm biến R giải thích sự thay đổi của hàm cung và từ đó, giá cả chỉ còn chức năng giải thích cho hàm cầu, nhưng cho dù như vậy, mô hình vẫn không xác định. Trong mô hình hai phương trình, nếu một phương trình bỏ sót một biến thì nó định dạng được. Chẳng hạn ở mô hình 2, vì hàm cầu không chứa biến lượng mưa nên nó định dạng được. Điều kiện tương tự cũng phải được thoả mãn trong các mô hình nhiều phương trình. Mô hình 3. Bây giờ ta thêm vào mô hình trên một biến thu nhập Y để có mô hình sau: Q dt = α 1 + α 2 P t + α 3 Y t + u 1t Q st = β 1 + β 2 P t + β 3 R t + u 2t Q dt = Q st Y t , R t được coi là các biến ngoại sinh. Các phương trình rút gọn nhận được như sau: P t = π 1 + π 2 R t + π 3 Y t + ε 1t Q t = π 4 + π 5 R t + π 6 Y t + ε 2t Mô hình trên có các tham số rút gọn xác định như các hàm của các tham số ban đầu như sau: 22 11 1 β−α α−β =π 22 3 2 β−α β =π 22 3 3 β−α α − =π 22 2112 4 β−α βα−βα =π 22 32 5 β−α βα =π 22 32 6 β−α α β − =π Giải hệ này tìm các tham số ban đầu, ta có: )()( 3 6 2 5 1 4 6 141 π π − π π π− π π π−π=α )( 4 6 141 π π ππβ −= 2 5 2 π π α = 3 6 2 π π β = 2 5 363 π π ππα −= 5 3 6 23 π π π πβ −= Đây là nghiệm duy nhất của hệ trên, cả hai phương trình đều xác định với các tham số duy nhất (định dạng đúng). Mô hình 4: Xét mô hình sau: Q dt = α 1 + α 2 P t + u 1t Q st = β 1 + β 2 P t + β 3 R t + β 4 W t + u 2t Q dt = Q st Ta có các phương trình rút gọn: P t = π 1 + π 2 R t + π 3 W t + ε 1t Q t = π 4 + π 5 R t + π 6 W t + ε 2t Trong đó : 22 11 1 β−α α−β =π 22 3 2 β−α β =π 22 4 3 β−α β =π 22 2112 4 β−α βα−βα =π 22 32 5 β−α βα =π 22 42 6 β−α βα =π Rõ ràng α 2 có hai giá trị: 2 5 2 π π =α và 3 6 2 π π =α , tương tự như vậy, các tham số khác cũng không xác định duy nhất. Pt : Vô định Qt : Không định dạng được. 4.2. QUY TẮC ĐỊNH DẠNG Để xác định khả năng định dạng của hệ phương trình cấu trúc, người ta sử dụng hai loại điều kiện là: + điều kiện bậc (Order condition) + điều kiện hạng (Rank condition) Điều kiện bậc chỉ là điều kiện cần chứ không phải là điều kiện đủ, tức là nếu điều kiện bậc không thoả mãn thì mô hình không định dạng được. Tuy nhiên việc thoả mãn điều kiện cần cũng chưa đảm bảo là mô hình sẽ định dạng được. Điều kiện hạng vừa là điều kiện cần vừa là điều kiện đủ. Điều kiện bậc. Điều kiện này áp đặt lên từng phương trình. Gọi: g là số biến nội sinh của mô hình; m là số biến có trong mô hình (cả nội sinh và ngoại sinh) nhưng vắng mặt tại phương trình đang xét. Khi đó: (i) Nếu m = g-1 thì phương trình định dạng đúng. (ii) Nếu m > g-1 thì phương trình vô định. (iii) Nếu m < g-1 thì phương trình không định dạng được. Trở lại với các mô hình trên: - Mô hình 1: mô hình có ba biến nội sinh (g=3) trong khi m = 1 tại cả hai phương trình và như ta đã thấy cả hai phương trình không định dạng được. - Mô hình 2: số biến nội sinh là ba nhưng chỉ có phương trình cầu có m=2, còn phương trình cung có m=1 và ta đã thấy phương trình cung không định dạng được. - Mô hình 4 có g=3 và phương trình cầu có m=3 phương trình này vô định. Ngoài ra, điều kiện cần còn có thể phát biểu bởi hai mệnh đề tương đương như [...]... u3t Y4t - β40 - β41Y1t - β42 Y2t - α43 X3t = u4t Hệ số của các biến Phương trình 1 Y 1 Y2 Y3 Y4 X1 X2 (1) - β10 1 (2) (3) (4) - β20 - β30 - β40 0 1 - β23 0 - α21 - α21 0 - β31 0 1 0 - α31 - α31 0 - β41 - β42 0 1 0 0 - - 12 - β13 X3 0 - α11 0 0 α43 Trên cơ sở bảng hệ số này, ta lập bảng: Số biến ngoại sinh không thuộc Phương trình Số biến nội sinh thuộc phương trình (K-k)=ai trừ 1: (g-1)= bi (1) a1... + u3t Viết lại mô hình: Ct - a1 - a2Yt = u1t It - b1 - b2Yt - b3rt = u2t Yt - Ct + It + Gt = u3t Lập bảng các hệ số với các phương trình cần định dạng: Phương trình Y 1 C r (1) I G -a1 0 -a2 (2) - b1 1 0 0 0 1 - b2 -b3 0 (3) 0 1 0 -1 -1 1 Xét điều kiện bậc: Số biến ngoại sinh Số biến nội sinh Được định không thuộc thuộc phương trình dạng ? Phương trình (K-k) (1) trừ 1: (g-1) 0 0 (2) đúng 1 1 Hãy xét... (G -1 )*(G -1 ) khác không, được xây dựng từ hệ số của các biến (nội sinh và ngoại sinh) không có mặt trong phương trình nhưng chứa trong các phương trình khác của hệ Trong thực tế, để áp dụng các điều kiện trên có thể tiến hành qua một ví dụ như sau: Xét mô hình: Y1t - β10 - β12 Y2t - β13 Y3t - α11X1t = u1t Y2t - β20 - β23 Y3t - α21X1t - α22X2t = u2t Y3t - β30 - β31 Y1t - α31X1t - α32X2t = u3t Y4t -. ..sau: Gọi: G- số biến nội sinh của mô hình g - số biến nội sinh ở một phương trình đã cho K - số biến ngoại sinh trong mô hình k - số biến ngoại sinh ở một phương trình đã cho Chú ý rằng: Một mô hình đủ sẽ có số phương trình cấp đúng bằng số biến nội sinh Mệnh đề 1: Trong một hệ gồm G phương trình, để một phương trình định dạng được thì nó không chứa ít nhất G-1 biến (nội sinh cũng như... đúng G-1 biến, thì phương trình được định dạng đúng Nếu không chứa hơn G-1 biến, thì phương trình là vô định Mệnh đề 2: Trong một hệ gồm G phương trình, để một phương trình định dạng được thì số biến ngoại sinh không chứa trong phương trình này không ít hơn số biến nội sinh trong phương trình này trừ đi 1, tức là: K - k ≥ g - 1 Nếu K - k = g -1 , thì phương trình được định dạng đúng Nếu K- k > g -1 biến,... Với mô hình trên, ta có kết quả sau: Số biến ngoại sinh không thuộc Phương trình (1) (K-k) Số biến nội sinh thuộc phương trình trừ 1 : (g-1) 2 Được định dạng? 2 đúng 1 đúng (2) 1 (3) 1 (4) 2 1 đúng 2 đúng Điều kiện hạng: Để phương trình (1) được định dạng thì phải tìm được ít nhất một định cấp 3*3 khác không được tạo bởi các biến không có mặt trong (1) Ta lấy hệ số của Y4 , X2 và X3 trong (2), (3) và . 0 1 - β 23 0 - α 21 - α 21 0 (3) - β 30 - β 31 0 1 0 - α 31 - α 31 0 (4) - β 40 - β 41 - β 42 0 1 0 0 - α 43 Trên cơ sở bảng hệ số này,. u 1t Y 2t - β 20 - β 23 Y 3t - α 21 X 1t - α 22 X 2t = u 2t Y 3t - β 30 - β 31 Y 1t - α 31 X 1t - α 32 X 2t = u 3t Y 4t - β 40 - β 41 Y 1t - β 42

Ngày đăng: 25/01/2014, 23:20

HÌNH ẢNH LIÊN QUAN

Với các mô hình trên hãy xác định tính chất của từng phương trình và xét xem biến nào là nội sinh, biến nào là ngoại sinh.?  - Tài liệu Kinh tế lượng nâng cao - Bài giảng số 6 pdf
i các mô hình trên hãy xác định tính chất của từng phương trình và xét xem biến nào là nội sinh, biến nào là ngoại sinh.? (Trang 4)
Mô hình 4: Xét mô hình sau: - Tài liệu Kinh tế lượng nâng cao - Bài giảng số 6 pdf
h ình 4: Xét mô hình sau: (Trang 9)
Trên cơ sở bảng hệ số này, ta lập bảng: - Tài liệu Kinh tế lượng nâng cao - Bài giảng số 6 pdf
r ên cơ sở bảng hệ số này, ta lập bảng: (Trang 12)
mỗi phương trình. Với mô hình trên, ta có kết quả sau: - Tài liệu Kinh tế lượng nâng cao - Bài giảng số 6 pdf
m ỗi phương trình. Với mô hình trên, ta có kết quả sau: (Trang 12)

TỪ KHÓA LIÊN QUAN

w