1. Trang chủ
  2. » Giáo án - Bài giảng

Sáng kiến kinh nghiệm THPT: Một số dạng bài tập về giao thoa sóng cơ

30 8 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Một Số Dạng Bài Tập Về Giao Thoa Sóng Cơ
Tác giả Bùi Thị Phúc
Trường học Trường THPT Nguyễn Thái Học
Chuyên ngành Vật lý
Thể loại sáng kiến
Năm xuất bản 2015-2019
Định dạng
Số trang 30
Dung lượng 826,15 KB

Nội dung

Nghiên cứu đề tài: “Một số dạng bài tập về giao thoa sóng cơ” từ cơ bản đến hay và khó thường gặp, từ đó đưa ra phương pháp giải cụ thể. Giúp học sinh có cách nhìn tổng quát, hiểu sâu bản chất vấn đề từ đó giải quyết tốt các bài tập về giao thoa sóng trong các kì thi chọn học sinh giỏi, thi THPT Quốc gia.

BÁO CÁO KẾT QUẢ  NGHIÊN CỨU, ỨNG DỤNG SÁNG KIẾN I. Lý do chọn đề tài  Thực hiên ch ̣ ương trinh giao duc trung hoc phô thông đ ̀ ́ ̣ ̣ ̉ ổi mới cả về mục tiêu,  phương pháp nhằm phát huy vai trò chủ động, sáng tạo làm chủ khoa học của   học sinh, theo đo ng ́ ươi giao viên phai co nh ̀ ́ ̉ ́ ưng thay đôi manh me vê ph ̃ ̉ ̣ ̃ ̀ ương  phap giang day đê phu h ́ ̉ ̣ ̉ ̀ ợp vơi nôi dung ch ́ ̣ ương trinh, phù h ̀ ợp với ngươi day ̀ ̣   va ng ̀ ươi hoc. Đ ̀ ̣ ứng trước nhưng yêu câu m ̃ ̀ ới, giao viên phai co nh ́ ̉ ́ ững cach ́   tiêp cân m ́ ̣ ơi đôi v ́ ́ ới cac bai hoc, ph ́ ̀ ̣ ương pháp giảng dạy mới để tạo cho học   sinh niềm đam mê đối với bộ mơn Vật lý Cũng như các mơn khoa học khác, Vật lý học là bộ mơn khoa học cơ bản,  làm cơ  sở  lý thuyết cho một số  mơn khoa học  ứng dụng mới ngày nay. Sự  phát triển của Vật lý học dẫn tới sự xuất hiện nhiều ngành kỹ thuật mới: Kỹ  thuật điện, kỹ thuật điện tử, tự động hố và điều khiển học, cơng nghệ thơng  tin…Bộ  mơn vật lý được đưa vào giảng dạy trong nhà trường phổ  thơng  nhằm cung cấp cho học sinh những kiến thức phổ thơng, cơ bản, có hệ thống   tồn diện về Vật lý. Hệ thống kiến thức này phải thiết thực, có tính kỹ thuật  tổng hợp và đặc biệt phải phù hợp với quan điểm Vật lý hiện đại. Để  học  sinh hiểu một cách sâu sắc và đầy đủ những kiến thức và có thể áp dụng các   kiến thức đó vào thực tiễn cuộc sống thì cần phải rèn luyện cho học sinh   những kỹ  năng, kỹ  xảo thực hành, kỹ  năng đo lường, quan sát, tiếp cận các  thiết bị hiện đại… Tuy vậy, Vật lý là một mơn học khó vì cơ sở  của nó là tốn học. Bài tập  vật lý rất đa dạng và phong phú. Trong phân phối chương trình số tiết bài tâp   lại hơi ít so với nhu cầu cần củng cố  kiến thức cho học sinh. Chính vì thế,  người giáo viên phải làm thế  nào để  tìm ra phương pháp tốt nhất nhằm tạo  cho học sinh niềm say mê u thích mơn học này.  Giúp học sinh việc phân  loại các dạng bài tập và hướng dẫn cách giải là rất cần thiết. Việc làm này  rất có lợi cho học sinh trong thời gian ngắn đã nắm được các dạng bài tập,  nắm được phương pháp giải và từ đó có thể phát triển hướng tìm tịi lời giải   mới cho các dạng bài tương tự Chúng ta đã biết rằng chương “sóng cơ học” có vị trí và vai trị rất quan  trọng trong chương trình Vật lí 12. Với đặc điểm của chương trình, đây là   phần liên quan đến kiến thức chương1 “dao động cơ” nhiều nhất, nó cũng là  một trong vài phần khó nhất của chương trình. Điều này được minh chứng  trong những năm gần đây hầu hết các câu khó, câu phân loại học sinh giỏi   trong đề  thi THPT Quốc gia thuộc phần sóng cơ. Với mong muốn giúp học  sinh giải quyết tốt các bài tập về sóng cơ nói chung, bài tập về giao thoa sóng  nói riêng trong q trình giảng dạy tơi đã chọn đề tài:  “ Một số dạng bài tập    giao thoa sóng cơ” từ  cơ  bản đến hay và khó thường gặp, từ  đó đưa ra  phương pháp giải cụ thể. Giúp học sinh có cách nhìn tổng qt, hiểu sâu bản  chất vấn đề từ đó giải quyết tốt các bài tập về giao thoa sóng trong các kì thi  chọn học sinh giỏi, thi THPT Quốc gia II. Tên sáng kiến:   Sáng kiến  “Một số dạng bài tập về giao thoa sóng cơ” được áp dụng cho  học sinh lớp 12 THPT  tham gia ơn luyện thi học sinh giỏi, thi THPT Quốc gia  mơn Vật lí 12.  III. Tác giả sáng kiến: ­ Họ và tên: Bùi Thị Phúc ­ Địa chỉ tác giả sáng kiến: Giáo viên trường THPT Nguyễn Thái Học ­ Số điện thoại: 0916765368.  Email: phuctuandangquang@gmail.com IV. Chủ đầu tư: khơng V. Lĩnh vực áp dụng sáng kiến: Ơn luyện thi học sinh giỏi, thi THPT Quốc  gia mơn Vật lí 12.  VI. Ngày sáng kiến được áp dụng lần đầu hoặc áp dụng thử:  Sáng kiến  “Một số dạng bài tập về giao thoa sóng cơ” được triển khai từ  tháng 10/2015 đến đầu  tháng 10/2019 trong q trình ơn luyện thi học sinh   giỏi, thi THPT Quốc gia mơn Vật lí 12.  VII. Mơ tả bản chất của sáng kiến: 1.  Cơ sở lý luận của sáng kiến.  1.1 Hiện tượng giao thoa sóng:  Là sự tổng hợp của 2 hay nhiều sóng kết hợp trong khơng gian, trong đó có  những chỗ biên độ sóng được tăng cường (cực đại giao thoa) hoặc triệt tiêu  (cực tiểu giao thoa). Hiện tượng giao thoa là hiện tượng đặc trưng của sóng 1.2. Điều kiện giao thoa: Hai nguồn sóng phát ra hai sóng cùng phương, cùng tần số và có hiệu số pha  khơng đổi theo thời gian gọi là hai nguồn kết hợp 1.3. Lí thuyết giao thoa:  Giao thoa của hai sóng phát ra từ hai nguồn sóng kết  hợp ,  cách nhau một khoảng l Xét 2 nguồn:  và     Với : là độ lệch pha của hai nguồn ­ Phương trình sóng tại M do hai sóng từ hai nguồn  truyền tới:  và  ( d ; d  là khoảng cách từ M đến hai nguồn) ­ Phương trình giao thoa tại M:  (lập phương trình này bằng máy tính với  thao tác giống như tổng hợp hai dao động)    *  Độ lệch pha của hai sóng từ hai nguồn đến M:     * Biên độ dao động tại M:   * Hiệu đường đi của sóng từ hai nguồn đến M:   1.3.1. Hai nguồn cùng biên độ:  và  ­ Phương trình giao thoa sóng tại M:    * Biên độ dao động tại M:  * Hiệu đường đi của hai sóng đến M:  + Khi   thì ;       (  ) + Khi   thì .  (  ) 1.3.1.1. Hai nguồn cùng biên độ, cùng pha:               + Nếu O là trung điểm của đoạn  thì tại O hoặc  các điểm nằm trên đường trung trực của đoạn  sẽ  dao động với biên độ cực đại và bằng:  + Khi    thì ;(  ) + Khi    thì .(  ) 1.3.1.2. Hai nguồn cùng biên độ, ngược pha:    Trong trường hợp hai nguồn dao động ngược pha nhau thì những kết quả về  giao thoa sẽ “ngược lại” với kết quả thu được khi hai nguồn dao động cùng  pha + Nếu O là trung điểm của đoạn  thì tại O hoặc các điểm nằm trên đường  trung trực của đoạn  sẽ dao động với biên độ cực tiểu và bằng:  + Khi   thì .               (  ) + Khi   thì .     (  ) 1.3.1.3. Hai nguồn cùng biên độ, vng pha:  + Nếu O là trung điểm của đoạn  thì tại O hoặc các điểm nằm trên đường  trung trực của đoạn  sẽ dao động với biên độ: .  2.  Thực trạng của sáng kiến Trong chương trình ơn thi học sinh giỏi  luyện thi THPT Quốc gia mơn Vật lí  12, bài tập giao thoa sóng cơ  là phần bài tập phức tạp và khó, các phương   pháp giải bài tập đơi khi cịn áp đặt, tài liệu nhiều nhưng viết dàn trải và chưa   nêu được  ưu, nhược điểm của các phương pháp giải bài tập thuộc nội dung  này. Trong những năm học trước, khi tham gia kỳ thi THPT quốc gia học sinh   thường khoanh bừa bài tập giao thoa sóng cơ thuộc phần phân loại thí sinh do  chưa nắm rõ phương pháp và lúng túng khi xác định dạng bài tập Để  học sinh chủ  động nắm bắt kiến thức, hứng thú hơn trong học tập  đồng thời nâng cao kĩ năng phân tích, nhận xét, nhận dạng bài tập của học sinh, qua  đó tìm ra cách giải bài tập tối  ưu nhất, vì vậy tơi chọn đề tài “Một số dạng   bài tập về giao thoa sóng cơ”.  3. Các biện pháp giải quyết vấn đề MỘT SỐ DẠNG BÀI TẬP VỀ GIAO THOA 3.1. BÀI TỐN LIÊN QUAN ĐẾN ĐIỀU KIỆN GIAO THOA Phương pháp giải 3.1.1. Điều kiện cực đại cực tiểu Cực đại là nơi các sóng kết hợp tăng cường lẫn nhau (hai sóng kết hợp cùng  pha):   Cực tiểu là nơi các sóng kết hợp triệt tiêu lẫn nhau (hai sóng kết hợp ngược  pha):  1.1.Hai nguồn kết hợp cùng pha (hai nguồn đồng bộ)        (  ) Trong trường hợp hai nguồn kết hợp cùng pha, tại M là cực đại khi hiệu  đường đi bằng một số nguyên lần bước sóng và cực tiểu khi hiệu đường đi  bằng một số bán nguyên lần bước sóng. Đường trung trực của AB là cực đại 3.1.1.2. Hai nguồn kết hợp ngược pha (  )               Trong trường hợp hai nguồn kết hợp ngược pha, tại M là cực đại khi hiệu  đường đi bằng một số bán ngun lần bước sóng và cực tiểu khi hiệu đường  đi bằng một số ngun lần bước sóng. Đường trung trực của AB là cực tiểu 3.1.1.3 Hai nguồn kết hợp bất kì    (  )            Đường trung trực của AB khơng phải là cực đại hoặc cực tiểu. Cực đại giữa  () dịch về phía nguồn trễ pha hơn Ví dụ 1: Xem hai loa là nguồn phát sóng âm A, B phát âm cùng phương cùng  tần số và cùng pha. Tốc độ truyền sóng âm trong khơng khí là 330 (m/s). Một  người đứng ở vị trí M cách S2 3 (m), cách S1 3,375 (m). Tìm tần số âm bé nhất,  để ở M người đó nghe được âm từ hai loa là to nhất A. 420 (Hz) B. 440 (Hz) C. 460 (Hz) D. 880 (Hz) Giải: Chọn đáp án D Để người đó nghe được âm to nhất thì tại M là cực đại. Vì hai nguồn kết hợp  cùng pha nên điều kiện cực đại là    Ví dụ 2: Trên mặt nước có hai nguồn phát sóng ngang, hình sin, ngược pha A,  B cùng phương và cùng tần số f (6,0 Hz đến 13 Hz). Tốc độ truyền sóng là 20  cm/s. Biết rằng các phần tử mặt nước ở cách A là 13 cm và cách B là 17 cm  dao động với biên độ cực đại. Giá trị của tần số sóng là A. 10 Hz B. 12 Hz C. 8,0 Hz D. 7,5 Hz Giải: Chọn đáp án D Vì hai nguồn kết hợp ngược pha nên điều kiện cực đại là     Ví dụ 3: Tại hai điểm A và B trên mặt chất lỏng có hai nguồn phát sóng dao  động với các phương trình lần lượt là  và . Bước sóng tạo ra là 4cm. Một  điểm M trên mặt chất lỏng cách các nguồn lần lượt là d1 và d2. Xác định điều  kiện để M nằm trên cực tiểu? (với m là số ngun) A.   B.  C.  D.  Giải: Chọn đáp án B Đây là trường hợp hai nguồn kết hợp bất kì nên để tìm điều kiện cực đại cực  tiểu ta căn cứ vào độ lệch pha của hai sóng kết hợp gửi đến M   Tại M cực tiểu nên  thay số vào  Chú ý: Nếu cho biết điểm M thuộc cực đại thì , thuộc cực tiểu thì . Từ đó ta  tìm được ,  theo k hoặc m 3.1.2. Cực đại cực tiểu gần đường trung trực nhất Khi hai nguồn kết hợp cùng pha, đường trung trực là cực đại giữa () Khi hai nguồn kết hợp lệch pha thì cực đại giữa lệch về phía nguồn trễ pha  3.1.2.1. Để tìm cực đại gần đường trung trực nhất  3.1.2.2.  Để tìm cực tiểu gần đường trung trực nhất: *  Nếu  thì cho  * Nếu  thì cho  Vì trên AB khoảng cách ngắn nhất giữa một cực đại và một cực tiểu là  /4   nên   Ví dụ 1: Giao thoa giữa hai nguồn kết hợp S1 và S2 trên mặt nước có phương  trình lần lượt là  và . Trên đường nối hai nguồn, trong số những điểm có biên  độ dao động cực đại thì điểm M gần đường trung trực nhất cách đường trung  trực một khoảng bằng A.  bước sóng và M nằm về phía S1 B.  bước sóng và M nằm về phía S2 C.  bước sóng và M nằm về phía S2 D.  bước sóng và M nằm về phía S1 Giải: Chọn đáp án A   Để tìm cực đại gần đường trung trực nhất cho  cực đại này lệch về phía S1 Ví dụ 2: Giao thoa giữa hai nguồn kết hợp S1 và S2 trên mặt nước có phương  trình lần lượt là  và . Trên đường nối hai nguồn, trong số những điểm có biên  độ dao động cực đại thì điểm M gần đường trung trực nhất (nằm về phía S1)  cách đường trung trực một khoảng bằng  bước sóng. Giá trị  có thể là A.   B.  C.  D.  Giải: Chọn đáp án A * Điểm M cách đường trung trực của S1S2 là  và M nằm về phía S1 nên   * Độ lệch pha hai sóng kết hợp tại M:  * Để tìm cực đại gần đường trung trực nhất cho  * Chú ý: Sau khi nhuần nhuyễn, chúng ta có thể rút ra quy trình giải nhanh:  Từ       Từ đây ta hiểu rõ tại sao cực đại giữa dịch về phía nguồn trễ pha hơn Ví dụ 3: Ở mặt thống của một chất lỏng có hai nguồn sóng kết hợp A và B,  dao động theo phương thẳng đứng với phương trình  và  ( và  tính bằng mm, t  tính bằng s), tốc độ truyền sóng 80 cm/s. Điểm M trên AB gần trung điểm I  của AB nhất dao động với biên độ cực đại cách I một khoảng bao nhiêu? A. 0,5 cm B. 0,2 cm C. 1 cm D. 2 cm Giải: Chọn đáp án C Bước sóng:    Điểm M nằm về phía B và cách đường trung trực là 1 cm 3.1.3. Kiểm tra tại M là cực đại hay cực tiểu Giả sử pha ban đầu của nguồn 1 và nguồn 2 lần lượt là  và . Ta căn cứ vào  độ lệch pha hai sóng thành phần . Thay hiệu đường đi vào cơng thức trên:     (  ) Ví dụ 1: Trên mặt nước có hai nguồn phát sóng kết hợp S1 và S2, dao động  theo các phương trình lần lượt là:  và . Tốc độ truyền sóng của các nguồn trên  mặt nước là 1 (m/s). Hai điểm P, Q thuộc hệ vân giao thoa có hiệu khoảng  cách đến hai nguồn là , . Hỏi các điểm P, Q nằm trên đường dao động cực đại  hay cực tiểu? A. P, Q thuộc cực đại B. P, Q thuộc cực tiểu C. P cực đại, Q cực tiểu D. P cực tiểu, Q cực đại Giải: Chọn đáp án C     Ví dụ 2: Trên mặt nước có hai nguồn kết hợp dao động theo phương vng  góc mặt nước tại hai điểm A và B  với các phương trình lần lượt là:  cm và   cm. Hai sóng lan truyền cùng bước sóng 120 cm. Điểm M là cực đại giao thoa.  Chọn phương án đúng A.  và  B.  và  C.  và  D.  và  Giải: Chọn đáp án C Theo tính chất của tam giác  nên loại phương án D   Thử các phương án thì chỉ thấy phương án C(  )  thỏa mãn:               Điểm M nằm trên cực đại giữa Chú ý: Để xác định vị trí các cực đại cực tiểu ta đối chiếu vị trí của nó so với   cực đại giữa Thứ tự các cực đại:   lần lượt là cực đại giữa, cực đại bậc 1, cực đại bậc 2,   cực đại bậc 3,… Thứ tự các cực tiểu: lần lượt là cực tiểu thứ 1, cực tiểu thứ 2, cực tiểu thứ  3,… Ví dụ 3: Trên mặt nước hai nguồn sóng A và B dao động điều hồ theo  phương vng góc với mặt nước với phương trình: . Biết tốc độ truyền sóng  20 (cm/s); biên độ sóng khơng đổi khi truyền đi. Một điểm N trên mặt nước  có hiệu khoảng cách đến hai nguồn A và B thoả mãn . Điểm N nằm trên  đường đứng n A. thứ 3 kể từ trung trực của AB và về phía A B. thứ 2 kể từ trung trực của AB và về phía A C. thứ 3 kể từ trung trực của AB và về phía B D. thứ 2 kể từ trung trực của AB và về phía B Giải: Chọn đáp án C Vì  nên điểm N nằm về phía B Bước sóng    cực tiểu thứ 3 kể từ cực đại giữa (đường trung trực trùng với cực đại giữa) 3.1.4. Biết thứ tự cực đại, cực tiểu tại điểm M tìm bước sóng, tốc độ  truyền sóng 3.1.4.1. Hai nguồn kết hợp cùng pha  (  ) 3.1.4.2. Hai nguồn kết hợp ngược pha  (  )   3.1.4.3. Hai nguồn kết hợp bất kì:                                                            Cực đại giữa nằm về phía nguồn trễ pha hơn.  VD: Nguồn A trễ pha hơn thì cực đại giữa nằm về phía A nên các cực đại  cực tiểu trên OA và OB lần lượt là: Ví dụ 1: Trong một thí nghiệm về giao thoa sóng trên mặt nước, hai nguồn  kết hợp A, B dao động cùng pha, cùng tần số  Hz. Tại một điểm M trên mặt  nước cách các nguồn A, B những khoảng  cm,  cm, sóng có biên độ cực đại.  Giữa M và đường trung trực AB có 1 dãy cực đại khác. Tốc độ truyền sóng  trên mặt nước là A. 34 cm/s B. 24 cm/s C. 72 cm/s D. 48 cm/s Giải: Chọn đáp án C Vì  nên M nằm về phía B Hai nguồn kết hợp cùng pha, đường trung trực là  cực đại giữa ứng với hiệu đường đi , cực đại thứ  nhất , cực đại thứ hai  chính là cực đại qua M  nên:     Ví dụ 2: Trong một thí nghiệm về giao thoa sóng  trên mặt nước, hai nguồn kết hợp ngược pha A, B dao động với tần số 20 Hz.  Tại một điểm M cách các nguồn A, B những khoảng 20 cm và 24,5 cm, sóng  có biên độ cực đại. Giữa M và đường trung trực của AB cịn có một dãy cực  đại khác. Tốc độ truyền sóng trên mặt nước là:  A. 30 cm/s B. 40 cm/s C. 45 cm/s D. 60 cm/s Giải: Chọn đáp án C Vì  nên M nằm về phía A. Hai nguồn kết hợp ngược pha, đường trung trực là  cực tiểu ứng với hiệu đường đi , cực đại thứ nhất , cực đại thứ hai  chính là  cực đại qua M nên:      Chú ý: Ta rút ra quy trình giải nhanh như sau: * Hai nguồn kết hợp cùng pha thì thứ tự các cực đại cực tiểu xác định như  sau:   * Hai nguồn kết hợp ngược pha thì thứ tự các cực đại cực tiểu xác định như  sau: Ví dụ 3: Ở mặt thống của một chất lỏng có hai nguồn sóng kết hợp A và B:  mm và  mm. Dao động của phần tử vật chất tại M cách A và B lần lượt 25  cm và 20 cm có biên độ cực đại. Biết giữa M và đường trung trực cịn có hai  dãy cực đại khác. Tìm bước sóng A. 3,00 cm B. 0,88 cm C. 2,73 cm D. 1,76 cm Giải: Chọn đáp án D   Vì nguồn A trễ pha hơn nên cực đại giữa lệch về phía A. Vì vậy các cực đại  trên OB (O là trung điểm của AB, khơng có ):   Đường trung trực khơng phải là cực đại nên cực đại qua M ứng với     3.1.5. Khoảng cách giữa cực đại, cực tiểu trên đường nối hai nguồn Trên AB cực đại ứng với bụng sóng, cực tiểu ứng với nút sóng dừng   Ví dụ 1: Trong một thí nghiệm tạo vân giao thoa trên sóng nước, người ta  dùng hai nguồn dao động đồng pha có tần số 50 Hz và đo được khoảng cách  giữa hai vân cực tiểu liên tiếp nằm trên đường nối liền hai tâm dao động là 2  mm. Tìm bước sóng và tốc độ truyền sóng A. 4 mm; 200 mm/s B. 2 mm; 100 mm/s C. 3 mm; 600 mm/s D. 2,5 mm; 125 mm/s Giải: Chọn đáp án A Khoảng cách hai cực tiểu liên tiếp là nửa bước sóng   * Chú ý: Khi hiệu đường đi thay đổi nửa bước sóng (tương ứng độ lệch pha  thay đổi một góc ) thì một điểm từ cực đại chuyển sang cực tiểu và ngược  lại Ví dụ 2: Trong thí nghiệm giao thoa sóng trên mặt nước ta quan sát được một  hệ vân giao thoa. Khi dịch chuyển một trong hai nguồn một đoạn ngắn nhất 5  cm thì vị trí điểm O trên đoạn thẳng nối 2 nguồn đang có biên độ cực đại  chuyển thành biên độ cực tiểu. Bước sóng là A. 9 cm B. 12 cm C. 10 cm D. 3 cm Giải: Chọn đáp án C Khi dịch chuyển một trong hai nguồn một đoạn ngắn nhất 5 cm thì hiệu  đường đi tại O thay đổi cũng 5 cm và O chuyển từ cực đại sang cực tiểu nên   hay   Chú ý: Nếu trong khoảng giữa A và B   có n dãy cực đại thì nó sẽ cắt AB   thành , trong đó  có  đoạn ở giữa bằng nhau và đều   bằng . Gọi x, y là chiều dài hai đoạn   gần 2 nguồn. Ta có:   Ví dụ 3: Trong một mơi trường vật  chất đàn hồi có hai nguồn kết hợp A và B cách nhau 3,6 cm, cùng tần số 50  Hz. Khi đó tại vùng giữa hai nguồn người ta quan sát thấy xuất hiện 5 dãy dao  10 * Vị trí các cực tiểu: (Ta chỉ xét trường hợp  ) Ví dụ 1: Trên bề mặt chất lỏng có hai nguồn A và B cách nhau 5,4 cm, có  phương trình lần lượt là:  cm và  cm. Bước sóng lan truyền 2 cm. Khi đi từ A  đến B, hãy các định vị trí cực đại gần A nhất, xa A nhất và cực đại lần thứ 2.  Xét các trường hợp: 1)  ; 2)  ; 3)   Giải:  1)   2)  3)  Ví dụ 2: Trên mặt nước có hai nguồn A, B cách nhau 8 cm dao động cùng  phương, phát ra hai sóng kết hợp với bước sóng 4 cm. Nguồn B sớm pha hơn  nguồn A là  . Điểm cực tiểu trên AO cách A gần nhất và xa nhất lần lượt là A. 0,5 cm và 6,5 cm B. 0,5 cm và 2,5 cm C. 1,5 cm và 3,5 cm D. 1,5 cm và 2,5 cm Giải: Chọn đáp án B   Chú ý: Gọi x là khoảng cách từ cực đại cực tiểu trên OB đến trung điểm O () ♣ Hai nguồn kết hợp cùng pha (O là cực đại): Cực đại   (với n là số nguyên lớn nhất thỏa mãn ) Cực tiểu  (với n là số ngun lớn nhất thỏa mãn ) ♣ Hai nguồn kết hợp ngược pha (O là cực tiểu): Cực đại  (với n là số ngun lớn nhất thỏa mãn ) Cực tiểu  (với n là số ngun lớn nhất thỏa mãn) ♣ Hai nguồn kết hợp bất kì (cực đại giữa dịch về phía nguồn trễ pha hơn  một đoạn  với      Cực đại  (với n là số ngun lớn nhất thỏa mãn  ) Cực tiểu     16 Ví dụ 3: Trên bề mặt chất lỏng có hai nguồn A và B đồng bộ cách nhau 4,5  cm. Bước sóng lan truyền 1,2 cm. Điểm cực tiểu trên khoảng OB cách O gần  nhất và xa nhất lần lượt là A. 0,3 cm và 2,1 cm B. 0,6 cm và 1,8 cm C. 1 cm và 2 cm D. 0,2 cm và 2 cm Giải: Chọn đáp án A Hai nguồn kết hợp cùng pha (O là cực đại), cực tiểu thuộc OB:   Với n là số ngun lớn nhất thỏa mãn     Ví dụ 4: Trên bề mặt nước có hai nguồn kết hợp A và B ngược pha cách  nhau 6 cm. Bước sóng lan truyền 1,5 cm. Điểm cực đại trên khoảng OB cách  O gần nhất và xa nhất lần lượt là A. 0,75 cm và 2,25 cm B. 0,375 cm và 1,5 cm C. 0,375 cm và 1,875 cm D. 0,375 cm và 2,625 cm Giải: Chọn đáp án D Hai nguồn kết hợp ngược pha (O là cực tiểu), cực đại thuộc OB: Với n là số nguyên lớn nhất thỏa mãn    3.2.2 Vị trí các cực đại, cực tiểu trên   Cách 1: Chỉ các đường hypebol ở phía OB mới cắt đường Bz. Đường cong gần O  nhất (xa B nhất) sẽ cắt Bz tại điểm Q xa B nhất (), đường cong xa O nhất  (gần B nhất) sẽ cắt Bz tại điểm P gần B nhất () Hai điểm M và N nằm trên cùng một đường nên hiệu đường đi như nhau:    ♣  Hai nguồn kết hợp cùng pha * Cực đại xa B nhất (gần O nhất) ứng với  nên:   * Cực đại gần B nhất (xa O nhất) ứng với  nên:  17 (với n là số nguyên lớn nhất thỏa mãn ) * Cực tiểu xa B nhất (gần O nhất) ứng với  nên:  * Cực tiểu gần B nhất (xa O nhất) ứng với  nên:  (với n là số nguyên lớn nhất thỏa mãn ) ♣  Hai nguồn kết hợp ngược pha * Cực đại xa B nhất (gần O nhất) ứng với  nên:  * Cực đại gần B nhất (xa O nhất) ứng với  nên:  (với n là số ngun lớn nhất thỏa mãn ) * Cực tiểu xa B nhất (gần O nhất) ứng với  nên:  * Cực tiểu gần B nhất (xa O nhất) ứng với  nên:  (với n là số ngun lớn nhất thỏa mãn ) ♣  Hai nguồn kết hợp bất kì () Cách 2: Độ lệch pha của hai sóng kết hợp:     ♣ Cực đại thuộc Bz thỏa mãn:   + Cực đại gần B nhất thì ,  hay    + Cực đại xa B nhất thì , hay  ♣ Cực tiểu thuộc Bz thỏa mãn:  + Cực tiểu gần B nhất thì , hay  + Cực tiểu xa B nhất thì , hay  Ví dụ 1: Trên bề mặt chất lỏng có hai nguồn phát sóng kết hợp A, B  dao  động cùng biên độ, cùng tần số 25 Hz, cùng pha, coi biên độ sóng khơng đổi.  Biết tốc độ truyền sóng là 80 cm/s. Xét các điểm ở mặt chất lỏng nằm trên  đường thẳng vng góc với AB tại B, dao động với biên độ cực đại, điểm  cách B xa nhất và gần nhất lần lượt bằng A. 39,6 m và 3,6 cm B. 80 cm và 1,69 cm C. 38,4 cm và 3,6 cm D. 79,2 cm và 1,69 cm Giải: Chọn đáp án C Bước sóng  cm. Với hai n guồn kết hợp cùng pha: * Cực đại xa B nhất (gần O nhất) ứng với  nên:    * Cực đại gần B nhất (xa O nhất) ứng với  nên:  (với n là số ngun lớn nhất thỏa mãn ) 18 Ví dụ 2: Trên bề mặt chất lỏng có hai nguồn phát sóng kết hợp A, B  dao  động cùng biên độ, cùng tần số 25 Hz, cùng pha, coi biên độ sóng khơng đổi.  Biết tốc độ truyền sóng là 80 cm/s. Xét các điểm ở mặt chất lỏng nằm trên  đường thẳng vng góc với AB tại B, dao động với biên độ cực tiểu, điểm  cách B xa nhất và gần nhất lần lượt bằng A. 39,6 cm và 3,6 cm B. 80 cm và 1,69 cm C. 38,4 cm và 3,6 cm D. 79,2 cm và 1,69 cm Giải: Chọn đáp án D Bước sóng  Với hai nguồn kết hợp cùng pha: * Cực tiểu xa B nhất (gần O nhất) ứng với  nên:  * Cực tiểu gần B nhất (xa O nhất) ứng với  nên:  (với n là số ngun lớn nhất thỏa mãn ) Ví dụ 3: Trên mặt thống của một chất lỏng có hai nguồn A, B cách nhau 3  cm dao động cùng phương, ngược pha, phát ra hai sóng kết hợp với bước  sóng 1 cm. Tại một điểm Q nằm trên đường thẳng qua B, vng góc với AB  cách B một đoạn z. Nếu Q nằm trên vân cực đại thì z có giá trị lớn nhất và  nhỏ nhất lần lượt là A. 4 cm và 1,25 cm.B. 8,75 cm và 0,55 cm C. 8,75 cm và 1,25 cm D. 4 cm và 0,55 cm Giải: Chọn đáp án B Cách 1: Với hai nguồn kết hợp ngược pha: * Cực đại xa B nhất (gần O nhất) ứng với  nên:  * Cực đại gần B nhất (xa O nhất) ứng với  nên:  (với n là số ngun lớn nhất thỏa mãn ) Cách 2: Độ lệch pha của hai sóng kết hợp:   Cực đại thuộc By thỏa mãn:   + Cực đại gần B nhất thì , hay   + Cực đại xa B nhất thì , hay   Ví dụ 4: (ĐH ­ 2013): Trong một thí nghiệm về giao thoa sóng nước, hai  nguồn kết hợp O1 và O2 dao động cùng pha, cùng biên độ. Chọn hệ trục tọa  độ vng góc xOy thuộc mặt nước với gốc tọa độ là vị trí đặt nguồn O1 cịn  nguồn O2 nằm trên trục Oy. Hai điểm P và Q nằm trên Ox có  cm và  cm. Dịch  chuyển nguồn O2 trên trục Oy đến vị trí sao cho góc PO2Q có giá trị lớn nhất  19 thì phần tử nước tại P khơng dao động cịn phần tử nước tại Q dao động với  biên độ cực đại. Biết giữa P và Q khơng cịn cực đại nào khác. Trên đoạn OP,  điểm gần P nhất mà các phần tử nước dao động với biên độ cực đại cách P  một đoạn là: A. 3,4 cm B. 2,0 cm C. 2,5 cm D. 1,1 cm Giải: Chọn đáp án B Xét   đạt cực đại khi  (BĐT Cơ si) Suy ra,  và  Vì P là cực tiểu và Q là cực đại liền kề nên:    Điểm Q là cực đại bậc 1 vậy N gần P nhất là cực đại ứng  với , ta có       3.2.3 .Vị trí các cực đại, cực tiểu trên   Từ điều kiện cực đại, cực tiểu  theo k hoặc m.    Hai điểm M và N nằm trên cùng một đường nên hiệu đường đi như nhau:   ♣  Hai nguồn kết hợp cùng pha * Cực đại gần C nhất (gần O nhất) ứng với  nên:   * Cực đại xa C nhất (xa O nhất) ứng với  nên: (với n là số nguyên lớn nhất thỏa mãn ) * Cực tiểu gần C nhất (gần O nhất) ứng với nên: * Cực tiểu xa C nhất (xa O nhất) ứng với  nên: (với n là số nguyên lớn nhất thỏa mãn ) ♣  Hai nguồn kết hợp ngược pha * Cực đại gần C nhất (gần O nhất) ứng với  nên: * Cực đại xa C nhất (xa O nhất) ứng với  nên: (với n là số nguyên lớn nhất thỏa mãn ) * Cực tiểu gần C nhất (gần O nhất) ứng với  nên: * Cực tiểu xa C nhất (xa O nhất) ứng với  nên: (với n là số ngun lớn nhất thỏa mãn ) 20 Ví dụ 1: Trong thí nghiệm giao thoa với hai nguồn phát sóng giống nhau tại  A, B trên mặt nước. Khoảng cách hai nguồn là  cm. Hai sóng truyền đi có  bước sóng 4 cm. Trên đường thẳng xx' song song với AB, cách AB một  khoảng 8 cm, gọi C là giao điểm của xx' với đường trung trực của AB.  Khoảng cách ngắn nhất từ C đến điểm dao động với biên độ cực tiểu nằm  trên xx' là A. 1,42 cm B. 1,50 cm C. 2,15 cm D. 2,25 cm Giải: Chọn đáp án A Cách 1: Hai nguồn kết hợp cùng pha, cực tiểu gần C nhất (gần O nhất) ứng  với  nên:     Cách 2:     Ví dụ 2: Trong thí nghiệm giao thoa với hai nguồn phát sóng giống nhau tại  A, B trên mặt nước. Khoảng cách hai nguồn là  cm. Hai sóng truyền đi có  bước sóng 3 cm. Trên đường thẳng xx' song song với AB, cách AB một  khoảng 8 cm, gọi C là giao điểm của xx' với đường trung trực của AB.  Khoảng cách xa nhất từ C đến điểm dao động với biên độ cực đại nằm trên  xx' là A. 24,25 cm B. 12,45 cm C. 22,82 cm D. 28,75 cm Giải: Chọn đáp án C Hai nguồn kết hợp cùng pha, cực đại xa C nhất (xa O nhất) ứng với  nên:  (với n là số ngun lớn nhất thỏa mãn ) Ví dụ 3: Tại hai điểm A và B trên mặt nước  cách nhau 8 cm có hai nguồn kết hợp dao động  với phương trình: ; , tốc độ truyền sóng trên  mặt nước là 30 cm/s. Xét đoạn thẳng  cm trên  mặt nước có chung đường trung trực với AB.  Tìm khoảng cách lớn nhất giữa CD và AB sao  cho trên đoạn CD chỉ có 3 điểm dao động với biên độ cực đại?  A. 3,3 cm B. 6 cm C. 8,9 cm D. 9,7 cm Giải: Chọn đáp án D     2.4. Vị trí các cực đại, cực tiểu trên đường trịn đường kính AB * Điểm M thuộc cực đại khi:  (  ) * Điểm M thuộc cực tiểu khi: (  ) 21 *  Trong các đề thi liên quan đến hai nguồn kết hợp cùng pha, thường hay  liên quan đến cực đại, cực tiểu gần đường trung trực nhất hoặc gần các  nguồn nhất. Vì vậy, ta nên nhớ những kết quả quan trọng sau đây: M là cực  đại * nằm gần trung trực nhất, nếu nằm về phía A thì  nếu nằm về phía B thì  * nằm gần A nhất thì  và nằm gần B nhất thì  Với n là số ngun lớn nhất thỏa mãn  Ví dụ 1: Trong thí nghiệm giao thoa sóng trên mặt nước hai nguồn giống hệt  nhau A và B cách nhau 8 cm, tạo ra sóng trên mặt nước với bước sóng 2 cm.  Điểm M trên đường trịn đường kính AB (khơng nằm trên trung trực của AB)  thuộc mặt nước gần đường trung trực của AB nhất dao động với biên độ cực  đại. M cách A một đoạn nhỏ nhất và lớn nhất lần lượt là A. 4,57 cm và 6,57 cm B. 3,29 cm và 7,29 cm C. 5,13 cm và 6,13 cm D. 3,29 cm và 7,29 cm Giải: Chọn đáp án A Hai nguồn kết hợp cùng pha, đường trung trực  là  cực đại giữa, hai cực đại gần nhất nằm hai  bên  đường trung trực có hiệu đường đi   (M gần A  hơn) và  (M xa A hơn).    Ví dụ 2: Trên mặt nước có hai nguồn A và B cách nhau 5 cm, có phương trình  lần lượt là:  cm và  (cm). Bước sóng lan truyền 3 cm. Điểm M trên đường trịn  đường kính AB (khơng nằm trên trung trực của AB) thuộc mặt nước gần  đường trung trực của AB nhất dao động với biên độ cực tiểu. M cách A là A. 3,78 cm B. 4,21 cm C. 2,39 cm D. 3 cm Giải: Chọn đáp án A Hai nguồn kết hợp bất kì, cực tiểu thuộc AB:  (khi , cực tiểu này nằm về phía B):   Ví dụ 3: Trên mặt nước có hai nguồn A và B cách nhau 8 cm, có phương trình  lần lượt là:  cm và  cm. Bước sóng lan truyền 1 cm. Điểm M trên đường trịn  đường kính AB thuộc mặt nước dao động với biên độ cực đại, cách A xa  nhất thì M cách B là A. 0,14 cm B. 0,24 cm C. 0,72 cm D. 8 cm Hướng dẫn: Chọn đáp án C 22 Độ lệch pha hai sóng kết hợp tại M:  Điểm cực đại thì phải thỏa mãn:   Điểm M là cực đại xa A nhất (gần B nhất) ứng  với , tức là:   3.2.5. Vị trí các cực đại, cực tiểu trên đường  trịn bán kính AB Ta thấy , từ điều kiện cực đại cực tiểu của M sẽ tìm  được  MB theo R Theo định lý hàm số cosin:     Ví dụ 1: (ĐH­2012) Trong hiện tượng giao thoa sóng nước, hai nguồn dao  động theo phương vng góc với mặt nước, cùng biên độ, cùng pha, cùng tần  số 50 Hz được đặt tại hai điểm S1 và S2 cách nhau 10 cm. Tốc độ truyền sóng  trên mặt nước là 75 cm/s. Xét các điểm trên mặt nước thuộc đường trịn tâm  S1, bán kính S1S2, điểm mà phần tử tại đó dao động với biên độ cực đại cách  điểm S2 một đoạn ngắn nhất bằng A. 85 mm B. 15 mm C. 10 mm D. 89 mm Giải: Chọn đáp án C                   Bước sóng:   Hai nguồn kết hợp cùng pha, đường trung trực là cực đại giữa, hai cực đại xa  nhất nằm hai bên đường trung trực có hiệu đường đi  (M gần S1 hơn) và  (M  gần S2 hơn); với n là số ngun lớn nhất thỏa mãn .  Do đó,   Ví dụ 2: Trên mặt nước, hai nguồn kết hợp A, B cách  nhau 20  cm dao động điều hịa cùng pha, tạo ra sóng có bước  sóng 3  cm. Xét các điểm trên mặt nước thuộc đường trịn  tâm A,  bán kính AB, điểm nằm trên đường trịn dao động với  biên độ  cực đại cách xa đường trung trực của AB nhất một khoảng bằng bao nhiêu?  A. 34,5 cm.  B. 26,1 cm.          C. 21,7 cm.  D. 19,7 cm Giải: Chọn đáp án B                 Điểm M phải là cực đại gần A nhất nên:     Chú ý: Điểm trên đường trịn tâm A bán kính AB cách đường thẳng AB gần  nhất thì phải nằm về phía B và xa nhất thì phải nằm về phía A Ví dụ 3: Trong hiện tượng giao thoa sóng nước, hai nguồn A, B cách nhau 20  cm dao động cùng biên độ, cùng pha, cùng tần số 50 Hz. Tốc độ truyền sóng  trên mặt nước là 1,5 m/s. Xét các điểm trên mặt nước thuộc đường trịn tâm  23 A, bán kính AB, điểm dao động với biên độ cực đại cách đường thẳng AB  một đoạn gần nhất một đoạn bằng bao nhiêu? A. 18,67 mm B. 17,96 mm C. 19,97 mm D. 15,39 mm Giải: Chọn đáp án C   Điểm M phải là cực đại gần B nhất nên:               3.3. BÀI TỐN LIÊN QUAN ĐẾN PHƯƠNG TRÌNH SĨNG TỔNG HỢP Phương pháp giải 3.3.1. Phương trình sóng tổng hợp 3.3.1.1. Hai nguồn cùng biên độ:       Biên độ dao động tổng hợp tại M:   Vận tốc dao động tại M là đạo hàm của  theo t: 3.3.1.2. Hai nguồn khác biên độ:    Ví dụ 1: Hai nguồn sóng cơ A và B cách nhau 24 cm là hai tâm dao động phát  đồng thời 2 sóng, với phương trình dao động lần lượt là  (cm) và  (cm) trong  đó t đo bằng giây. Coi biên độ sóng khơng đổi khi truyền đi và bước sóng lan  truyền 6 cm. Viết phương trình dao động tổng hợp tại điểm M trên mặt nước  cách A một khoảng 27 cm và cách B một khoảng 18 cm A.   B.  C.  D.  Giải: Chọn đáp án B   Ví dụ 2: Trên mặt nước hai nguồn sóng A và B dao động theo phương trình:   cm;  cm. Biết tốc độ truyền sóng 10 cm/s; biên độ sóng khơng đổi khi truyền  đi. Viết phương trình dao động tổng hợp tại điểm M trên mặt nước cách A  một khoảng 9 cm và cách B một khoảng 8 cm A.  B.  C.  D.  Giải: Chọn đáp án A     Chú ý: Nếu hai điểm M và N nằm trên đoạn AB thì  nên từ các cơng thức: 24  và Ta suy ra:   Ví dụ 3: Tại hai điểm A và B trên mặt nước có 2 nguồn sóng kết hợp (nguồn  B sớm hơn nguồn A là ), biên độ lần lượt là 4 cm và 2 cm, bước sóng là 6 cm.  Coi biên độ khơng đổi khi truyền đi. Điểm M cách A là 21 cm, cách là B là 20  cm sẽ dao động với biên độ bằng A.   B. 6 cm C.  D.  Giải: Chọn đáp án C 3.3.2. Trạng thái các điểm nằm trên AB Trường hợp hai nguồn kết hợp cùng pha thì tổng số cực đại trên khoảng AB  được xác định từ  . Các cực đại trên khoảng AB được xác định từ . Các cực  đại này chia làm hai nhóm: một nhóm cùng pha với O và một nhóm ngược pha  với O Nếu  là số khơng ngun thì cực đại tại O khơng cùng pha, khơng ngược pha  với các nguồn nên trên AB cùng  khơng có cực đại nào cùng pha hoặc ngược  pha với các nguồn Nếu  là một số ngun chẵn  thì cực đại tại O cùng pha. Nếu  là một số  ngun lẻ   thì cực đại tại O ngược pha   Số cực đại cùng pha với nguồn ln ln ít hơn số cực đại ngược pha với  nguồn là 1 Ví dụ 1: Tại điểm A và B trên mặt nước có hai nguồn sóng kết hợp cùng pha  cùng biên độ, bước sóng  Coi biên độ khơng đổi khi truyền đi. Biết khoảng  cách . Hỏi trên khoảng AB có bao nhiêu điểm dao động với biên độ cực đại  và cùng pha với các nguồn?  A. 7 B. 8 C. 6 D. 17 Giải: Chọn đáp án A Ta thấy: (số chẵn) nên số cực đại cùng pha với nguồn là  và số cực đại  ngược pha với nguồn là    Ví dụ 2: Hai nguồn sóng A, B cách nhau 10 cm trên mặt nước tạo ra giao thoa  sóng, dao động tại nguồn có phương trình  và , tốc độ truyền sóng trên mặt  nước là 1 m/s. Số điểm trên đoạn AB có biên độ cực đại và dao động cùng  pha với trung điểm O của đoạn AB là A. 5 điểm B. 9 điểm C. 11 điểm D. 4 điểm 25 Giải: Chọn đáp án D Bước sóng:   Ta thấy:  Tổng số cực dại trên AB là , trong đó có 5 cực đại ngược pha với  nguồn và 4 cực đại cùng pha với nguồn Vì  nên O cực đại tại O dao động ngược pha với nguồn. Vậy cực đại tại O là  1 trong 4 cực đại dao động ngược pha với nguồn 3.3.3. Trạng thái các điểm nằm trên đường trung trực của AB Xét trường hợp hai nguồn kết hợp cùng pha:     Độ lệch pha của M so với các nguồn:   Điều kiện của d:  Sau khi tìm được d thì tính được:  Ví dụ 1: Hai nguồn kết hợp  và cách nhau một khoảng là 50 mm đều dao  động theo phương trình:  trên mặt nước. Biết tốc độ truyền sóng trên mặt  nước 0,8 (m/s) và biên độ sóng khơng đổi khi truyền đi. Hỏi điểm gần nhất  dao động cùng pha với các nguồn nằm trên đường trung trực của  cách nguồn   là bao nhiêu? A. 32 mm B. 28 mm C. 34 mm D. 25 mm Giải: Chọn đáp án A Bước sóng  . M dao động cùng pha với nguồn khi   Điều kiện : Ví dụ 2: Trong thí nghiệm giao thoa sóng trên mặt nước, hai nguồn AB cách  nhau 14,5 cm dao động cùng phương thẳng đứng cùng pha tạo ra sóng trên  mặt nước có bước song 2 cm. Điểm M thuộc mặt nước nằm trên đường trung  trực của AB gần A nhất dao động vng pha với A cách A là A. 9 cm B. 8,5 cm C. 10 cm D. 7,5 cm Giải: Chọn đáp án D   Ví dụ 3: Trên mặt nước có hai nguồn sóng giống nhau A và B, cách nhau  khoảng 12 (cm) đang dao động vng góc với mặt nước tạo ra sóng có bước  sóng 1,6 cm. Gọi C và D là hai điểm khác nhau trên mặt nước, cách đều hai  nguồn và đều cách trung điểm O của AB một khoảng 8 (cm). Số điểm dao  động ngược pha với nguồn trên CD là A. 6 B. 5 C. 4 D. 10 Giải: Chọn đáp án C   Trên CD có  Ví dụ 4 (ĐH ­ 2011): Ở mặt chất lỏng có hai nguồn A, B cách nhau 18 cm,  dao động theo phương thẳng đứng với phương trình  (với t tính bằng s). Tốc  26 độ truyền sóng của mặt chất lỏng là 50 cm/s. Gọi O là trung điểm của AB,  điểm M ở chất lỏng nằm trên đường trung trực của AB và gần O nhất sao  cho phần tử tại M dao động cùng pha với phần tử chất lịng tại O. Khoảng  cách MO là A. 10 cm B.   C.  D. 2 cm Giải: Chọn đáp án B              Cách 1: Điểm M gần O nhất dao động cùng pha với O:   Cách 2:          dao động ngược pha với A, B M gần O nhất dao động cùng pha với O (tức là ngược pha với nguồn) thì   VIII. Về khả năng áp dụng của sáng kiến: Với kết quả điểm kiểm tra khảo sát các em chưa  được luyện kĩ năng phân  tích, nhận dạng bài tập  so với các em đã được học tơi nhận thấy khi đã phân  loại được dạng bài tập, nhận định cách giải, thì việc giải bài tốn về giao  thoa sóng cơ có hiệu quả hơn rất nhiều Kết quả  khảo sát dạy học theo chủ  đề  “Một số  dạng bài tập về  giao   thoa sóng cơ”  cho đội tuyển học sinh giỏi Vật lí 12, học sinh ơn thi THPT   Quốc gia trường THPT Nguyễn Thái học    năm học 2015 – 2016 ; năm học  2016 – 2017; năm học 2017­2018; ; năm học 2018­2019 và  năm học 2019­2020   như sau:  KẾT QUẢ KHẢO SÁT Điểm 10 Năm học Bài kiểm tra số 1 0% Bài kiểm tra số 2 0% Điểm 9 Điểm 8 Điểm 7 Điểm 6 0% 10% 10,7% 56,7 % 30% 13.3% 63,3% 20% Qua kết quả  dạy học trước và sau khi áp dụng phân loại bài tập giao  thoa sóng cơ bản thân tơi thấy rằng phương pháp phân loại đã mang lại hiệu  quả cao trong cơng tác giảng dạy IX. Những thơng tin cần được bảo mật : Khơng X. Các điều kiện cần thiết để áp dụng sáng kiến: Đây là phần kiến thức tổng hợp sử dụng nhiều kiến thức Tốn học, Vật lí  và khả  năng biến đổi, logic cao vì vậy chỉ  áp dụng với đối tượng học sinh   khá, giỏi và học sinh ơn luyện đội tuyển thi học sinh giỏi Vật lí, ơn thi THPT   Quốc gia 27       Đối với trường THPT, kế hoạch ơn học sinh giỏi chỉ trong một thời gian   ngắn vì vậy nên có thêm nhiều tài liệu tham khảo có giá trị  để  cơng tác dạy   học sinh giỏi đạt hiệu quả cao hơn XI. Đánh giá lợi ích thu được hoặc dự kiến có thể thu được do áp dụng  sáng kiến theo ý kiến của tác giả          Đề tài “Một số dạng bài tập về giao thoa sóng cơ”  giúp học sinh tích  cực chủ động trong học tập, mang lại hiệu quả tốt trong q trình giải bài tập   và giải các đề thi học sinh giỏi, đề thi THPT Quốc gia Giáo viên khi nghiên cứu koa học có thêm cơ  hội bồi dưỡng chun mơn   nhằm nâng cao năng lực giảng dạy. Đồng thời tìm cho mình một phương   pháp dạy học để có được khơng khí hứng thú và lơi cuốn nhiều học sinh tham  gia giải các bài tập vật lí, tạo niềm tin và niềm say mê, hứng thú cho học sinh   tham gia đội tuyển thi học sinh giỏi mơn Vật lí                Đồng thời sáng kiến này góp thêm một tài liệu tham khảo cho đồng   nghiệp trong q trình giảng dạy và học sinh trong q trình ơn thi THPT   Quốc Gia XII. Danh sách những tổ chức/cá nhân đã tham gia áp dụng thử hoặc áp  dụng sáng kiến lần đầu  Số TT Tên tổ chức/cá  nhân Địa chỉ Học sinh lớp 12 Trường THPT  Nguyễn Thái Học Ơn học sinh giỏi  Vật lí, ơn thi THPT  Quốc gia chun đề  giao thoa sóng Trường THPT  Nguyễn Thái Học Ơn học sinh giỏi  Vật lí, ơn thi THPT  Quốc gia chun đề  giao thoa sóng Trường THPT  Nguyễn Thái Học Ơn học sinh giỏi  Vật lí, ơn thi THPT  Quốc gia chun đề  năm học 2015­2016 Học sinh lớp 12 năm học 2016­2017 Học sinh lớp 12 năm học 2017­2018 28 Phạm vi/Lĩnh vực áp dụng sáng kiến giao thoa sóng Học sinh lớp 12 năm học 2018­2019 Học sinh lớp 12 năm học 2019­2020 Trường THPT  Nguyễn Thái Học Ơn học sinh giỏi  Vật lí, ơn thi THPT  Quốc gia chun đề  giao thoa sóng Trường THPT  Nguyễn Thái Học Ơn học sinh giỏi  Vật lí, ơn thi THPT  Quốc gia chuyên đề  giao thoa sóng Vĩnh Yên, ngày … tháng…  năm 2020 Vĩnh Yên, ngày 12 tháng 02 năm 2020 Thủ trưởng đơn vị Tác giả sáng kiến Bùi Thị Phúc MỤC LỤC I Lý chọn đề tài II Tên sáng kiến III Tác giả sáng kiến IV Chủ đầu tư V Lĩnh vực áp dụng sáng kiến VI Ngày sáng kiến áp dụng lần đầu áp dụng thử VII Mô tả chất sáng kiến Cơ sở lý luận sáng kiến Thực trạng sáng kiến Các biện pháp giải vấn đề VIII Về khả áp dụng sáng kiến: IX Những thông tin cần bảo mật : Không X Các điều kiện cần thiết để áp dụng sáng kiến: XI Đánh giá lợi ích thu dự kiến thu áp dụng sáng kiến theo ý kiến tác giả XII Danh sách tổ chức/cá nhân tham gia áp dụng thử áp dụng sáng kiến lần đầu Tài liệu tham khảo 29 Trang 2 2 2 45 46 46 46 46 49 TÀI LIỆU THAM KHẢO  1. Lương Dun Bình ­ Tơ Giang ­ Vũ Quang  (2008), Vật lí 12, NXB Giáo  dục  2. Nguyễn Thế Khơi ­ Vũ Thanh Khiết ­ Nguyễn Đức Thâm ( 2008), Vật lí  12 Nâng cao, NXB Giáo dục 3. Vũ Quang ­ Lương Dun Bình ­ Tơ Giang ( 2014), Bài tập Vật lý 12, NXB  Giáo dục 4. Vũ Thanh Khiết ­ Nguyễn Thế Khơi (2012), Tài liệu chun Vật lí 12, NXB  Giáo dục 5. Lê Văn Thành (2011), Phân loại và phương pháp giải nhanh bài tập Vật lí  12, NXB Đại học Sư Phạm 6. Chu Văn Biên , Giải nhanh theo chủ đề trên VTV2 mơn Vật lí 7. Phạm Đức Cường ­ Cảnh Chí Đạt ­ Trần Thanh Sang (2014), Phương pháp  giải nhanh trắc nghiệm Vật lí, NXB ĐH Quốc Gia Hà Nội 8. Phạm Quốc Toản, Bài giảng giao thoa sóng cơ ( YouTube) 30 ... đó tìm ra cách giải? ?bài? ?tập? ?tối  ưu nhất, vì vậy tơi chọn đề tài ? ?Một? ?số? ?dạng   bài? ?tập? ?về? ?giao? ?thoa? ?sóng? ?cơ? ??.  3. Các biện pháp giải quyết vấn đề MỘT SỐ DẠNG BÀI TẬP VỀ? ?GIAO? ?THOA 3.1. BÀI TỐN LIÊN QUAN ĐẾN ĐIỀU KIỆN? ?GIAO? ?THOA. .. loại được? ?dạng? ?bài? ?tập,  nhận định cách giải, thì việc giải? ?bài? ?tốn? ?về? ?giao? ? thoa? ?sóng? ?cơ? ?có hiệu quả hơn rất nhiều Kết quả  khảo sát dạy học theo chủ  đề  ? ?Một? ?số ? ?dạng? ?bài? ?tập? ?về ? ?giao   thoa? ?sóng? ?cơ? ?? ...  thi THPT Quốc gia thuộc phần? ?sóng? ?cơ.  Với mong muốn giúp học  sinh giải quyết tốt các? ?bài? ?tập? ?về? ?sóng? ?cơ? ?nói chung,? ?bài? ?tập? ?về? ?giao? ?thoa? ?sóng? ? nói riêng trong q trình giảng dạy tơi đã chọn đề tài:  “ Một? ?số? ?dạng? ?bài? ?tập

Ngày đăng: 01/03/2022, 09:17

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w