1. Trang chủ
  2. » Luận Văn - Báo Cáo

Một số phương pháp nâng cao hiệu quả dự báo lan truyền thông tin trên mạng xã hội

117 27 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Một Số Phương Pháp Nâng Cao Hiệu Quả Dự Báo Lan Truyền Thông Tin Trên Mạng Xã Hội
Tác giả Dương Ngọc Sơn
Người hướng dẫn TS. Nguyễn Như Sơn, TS. Nguyễn Ngọc Cương
Trường học Viện Hàn Lâm Khoa Học Và Công Nghệ Việt Nam
Chuyên ngành Máy Tính
Thể loại luận án tiến sĩ
Năm xuất bản 2022
Thành phố Hà Nội
Định dạng
Số trang 117
Dung lượng 1,29 MB

Nội dung

Một số phương pháp nâng cao hiệu quả dự báo lan truyền thông tin trên mạng xã hội .Một số phương pháp nâng cao hiệu quả dự báo lan truyền thông tin trên mạng xã hội .Một số phương pháp nâng cao hiệu quả dự báo lan truyền thông tin trên mạng xã hội .Một số phương pháp nâng cao hiệu quả dự báo lan truyền thông tin trên mạng xã hội .Một số phương pháp nâng cao hiệu quả dự báo lan truyền thông tin trên mạng xã hội .Một số phương pháp nâng cao hiệu quả dự báo lan truyền thông tin trên mạng xã hội .Một số phương pháp nâng cao hiệu quả dự báo lan truyền thông tin trên mạng xã hội .

BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ …… ….***………… DƯƠNG NGỌC SƠN MỘT SỐ PHƯƠNG PHÁP NÂNG CAO HIỆU QUẢ DỰ BÁO LAN TRUYỀN THÔNG TIN TRÊN MẠNG XÃ HỘI LUẬN ÁN TIẾN SĨ NGÀNH MÁY TÍNH Hà Nội - 2022 VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ …… ….***………… DƯƠNG NGỌC SƠN MỘT SỐ PHƯƠNG PHÁP NÂNG CAO HIỆU QUẢ DỰ BÁO LAN TRUYỀN THÔNG TIN TRÊN MẠNG XÃ HỘI LUẬN ÁN TIẾN SĨ NGÀNH MÁY TÍNH Chun ngành : Hệ thống thơng tin Mã số: 48 01 04 Người hướng dẫn khoa học: TS Nguyễn Như Sơn TS Nguyễn Ngọc Cương Hà Nội - 2022 iii LỜI CAM ĐOAN Tơi cam đoan cơng trình nghiên cứu riêng tôi, các sô liệu, tài liệu đƯợc sư dụng Luận án đƯợc thu thập tư nghiên cứu thực tế; đó, bao gồm một sô kết qua nghiên cứu đa đƯợc các tạp chi khoa học nƯớc cũng nhƯ thư nghiệm thực tế “Hệ thống phân tich liệu mạng xa hội” mà co co hội tham gia thực hiện Các nội dung viết chung vói các tác gia khác đƯợc sư đồng ý các đồng tác gia tRƯớc đƯa vào Luận án Ngoài ra, tài liệu tham khao đƯợc trích dẫn nguồn đầy đủ Trân trọng, DƯong Ngọc Son LỜI CẢM ƠN Để co kết qua hôm nay, xin cam on Học viện Khoa học công nghệ, Viện Hàn lâm Khoa học công nghệ Việt Nam đa tổ chức, đào tạo hƯớng dẫn tơi hồn thành các thủ tục hồn thiện Luận án Tơi xin bày tỏ lịng biết ơn sâu sắc đến TS Nguyễn Ngọc CƯong - Pho Cục tRƯơng Cục An ninh mạng phịng chớng tội phạm sư dụng công nghệ cao, Bọ Công an TS.Nguyễn NhƯ Son - TRƯơng Phịng Các hệ thớng phần mềm tich họp, Viện Công nghệ thông tin, Viện Hàn lâm Khoa học cơng nghệ Việt Nam đa tận tình hƯớng dẫn, bảo giúp đỡ suốt quá trình thực hiện Luận án Xin chân thành cam on sư giúp đỡ PGS.TS.Nguyễn Long Giang, TS.Nguyễn Việt Anh - Viện Công nghệ thông tin, PGS.TS.Nguyễn Ngọc Hoa - TRƯờng Đại học Quốc gia Hà Nội đa truyền đạt cho kiến thức quý báu làm tiền đề cho tơi tư quá trình bắt đầu nghiên cứu đến xây dựng hồn thiện Luận án Tơi cũng xin cam on lanh đạo đon vị công tác Phòng Kỹ thuật Viện Nghiên cứu KTNV, Cục Kỹ thuật nghiệp vụ, Bọ Công an đa tạo điều kiện cho để vưa làm việc, vưa học tập thưc hiện nghiên cứu Trong quá trình làm việc đa cho co điều kiện tiếp xúc với các hệ thông kỹ thuật, tham dư các họi thao liên quan đến nọi dung trình bày Luận án Ći cùng, xin gửi lời cam on sâu sắc chân thành đến Gia đình, NGƯời đa ln bên ủng hộ, động viên để co đƯợc ngày hơm Trong quá trình thực hiện Luận án, tơi cũng nhận đƯợc sư giúp đỡ nhiều ngƯời mà không tiện liệt kê đây, xin cam on kính chúc tất ca mọi ngƯời sức khỏe, hạnh phúc thành công Dương Ngọc Sơn MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN ii MỤC LỤC iii DANH MỤC CÁC TỪ VIẾT TẮT v DANH MỤC CÁC BẢNG vi DANH MỤC CÁC HÌNH vii MỞ ĐẦU 1 Phát biểu vấn đề Lý chọn đề tài 3 Mục tiêu luận án Các đong gop luận án Bô cục Luận án Chương I TỔNG QUAN VỀ LAN TRUYỀN THÔNG TIN TRÊN MẠNG XÃ HỘI 1.1 Mạng xa họi lan truyền thông tin mạng xa họi 1.1.1 Mạng xa họi 1.1.2 Lan truyền thông tin mạng xa họi 1.2 Các lĩnh vưc nghiên cứu phân tich mạng xa họi 1.2.1 Khai phá liệu mạng xa họi .9 1.2.2 Phân tich mơ hình liệu đô thị .10 1.2.3 Phát hiện cọng đông 10 1.2.4 Dư báo lan truyền thông tin 11 1.2.5 An tồn thơng tin 12 1.3 Phát biểu toán phát triển mọt sô pHƯong pháp nâng cao hiệu qua dư báo lan truyền thông tin mạng xa họi 13 1.4 Các HƯớng nghiên cứu liên quan .16 1.4.1 Nâng cao tôc đọ dư báo lan truyền thông tin 16 1.4.2 Nâng cao đọ chinh xác dư báo lan truyền thông tin 18 1.5 PHƯong pháp đề xuất 20 1.6 Mọt sô định nghĩa co ban 21 1.6.1 Đô thị 21 1.6.2 Tinh toán song song 26 1.6.3 Mơ hình lan truyền thơng tin 27 1.7 Kết luận CHƯong I 28 Chương II NÂNG CAO TỐC ĐỘ DỰ BÁO LAN TRUYỀN THÔNG TIN 30 2.1 Đặt vấn đề 30 2.2 Mọt sô khái niệm liên quan .33 2.2.1 Các phép toán đô thị 33 2.2.2 Đọ trung tâm .37 2.2.3 Tinh toán song song 39 2.3 Nâng cao tôc đọ dư báo lan truyền thông tin 43 2.3.1 Rút gọn đô thị 43 2.3.2 Song song hoa quá trình tinh toán đọ trung tâm trung gian 47 2.3.3 PHƯong pháp kết hợp hai kỹ thuật 50 2.4 Thưc nghiệm kết qua 53 2.4.1 Dữ liệu thưc nghiệm 53 2.4.2 Cài đặt thưc nghiệm 53 2.4.3 Kết qua thưc nghiệm 54 2.5 Kết luận CHƯong II 58 Chương III NÂNG CAO ĐỘ CHÍNH XÁC DỰ BÁO LAN TRUYỀN THÔNG TIN59 3.1 Đặt vấn đề 59 3.2 Mọt sô khái niệm liên quan .61 3.2.1 Mô hình lan truyền thơng tin rời rạc 61 3.2.2 Mơ hình NGƯỡng tún tinh (LT) .62 3.2.3 Mơ hình bậc đọc lập (IC) 64 3.2.4 Mơ hình cạnh trưc tuyến (live-edge) 65 3.3 Nâng cao đọ chinh xác dư báo lan truyền thông tin 68 3.3.1 Ảnh HƯơng quan hệ NGƯời dùng 69 3.3.2 Ảnh HƯơng sơ thich NGƯời dùng 71 3.3.3 Đo LƯờng anh HƯơng bên .73 3.3.4 Xây dưng lan truyền 74 3.4 Thưc nghiệm kết qua 76 3.4.1 Dữ liệu thưc nghiệm 76 3.4.2 PHƯong pháp thưc nghiệm 77 3.4.3 Kết qua thưc nghiệm 78 3.5 Kết luận CHƯong III 81 KẾT LUẬN CHUNG 83 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ 86 TÀI LIỆU THAM KHẢO 87 DANH MỤC CÁC TỪ VIẾT TẮT STT Từ viết Viết đầy đủ tắt Dịch nghĩa ĐƯờng ngắn cặp đỉnh APSP All-Pairs Shortest Path bBFS bi-directional BFS Duyệt theo chiều rọng ca chiều BC Betweenness Centrality Đọ trung tâm trung gian BFS Breadth-First Search Duyệt theo chiều rọng TRƯỚc CC Closeness Centrality Đọ trung tâm gần CPU Central Processing Unit Bọ xư lý trung tâm DC Degree Centrality Đọ trung tâm bậc DFS Depth-First Search Duyệt theo chiều sâu tRƯớc DS Dataset Bọ liệu 10 EC Eigenvector Centrality Đọ trung tâm vector riêng 11 GPU 12 IC Independent Cascade Bậc đọc lập 13 LT Linear Threshold NgƯỡng tún tinh 14 RM Regression Model Mơ hình quy 15 SDSP Single-Destination ĐƯờng ngắn đến đỉnh Shortest Path đich 16 SSSP 17 UI Graphic Processing Unit Bọ xư lý đô họa Single-Source Shortest ĐƯờng ngắn tư đỉnh Path nguôn User Interaction TƯong tác ngƯời dùng DANH MỤC CÁC BẢNG Bảng 2.1 So sánh thời gian lan truyền (s) 47 Bảng 2.2 Kết tính BC CC trước rút gọn 51 Bảng 2.3 Kết tính BC CC sau rút gọn .52 Bảng 2.4 Thông tin liệu thử nghiệm 53 Bảng 2.5 So sánh thời gian tính toán BC trước sau rút gọn 55 Bảng 2.6 Thời gian tính tốn BC giải thuật Red-Bet số luồng thay đổi (giây) 55 Bảng 2.7 Hệ số tăng tốc giải thuật Red-Bet số luồng thay đổi .56 Bảng 2.8 Thời gian tính tốn BC với liệu ba giải pháp (giây) 57 Bảng 2.9 Hệ số tăng tốc Red-Bet so với TeexGraph NetworKit tính tốn BC 58 Bảng 3.1 Ví dụ nhật ký hoạt động 69 Bảng 3.2 So sánh hiệu suất phương pháp chưa xét ảnh hưởng bên 79 Bảng 3 So sánh hiệu suất phương pháp xuất ảnh hưởng bên 80 DANH MỤC CÁC HÌNH Hình Thống kê số liệu người dùng năm 2020 Hình Ứng dụng phân tích thơng tin mạng xã hội Hình 1.1 Lan truyền thông tin .8 Hình 1.2 Bài tốn phát cấu trúc cộng đồng học viên trường đại học 11 Hình 1.3 Cấu trúc đồ thị 21 Hình 1.4 Một số kiểu đồ thị 22 Hình 2.1 Ví dụ duyệt theo chiều rộng trước 34 Hình 2.2 Ví dụ duyệt theo chiều sâu trước 35 Hình 2.3 Mơ hình xử lý song song CilkPlus 43 Hình 2.4 Đồ thị ngẫu nhiên 500 đỉnh 46 Hình 2.5 Đồ thị ngẫu nhiên 400 đỉnh 46 Hình 2.6 Sơ đồ khối q trình tính tốn Độ trung tâm trung gian theo giải thuật kết hợp 49 Hình 2.7 Đồ thị trước rút gọn 51 Hình 2.8 Đồ thị sau rút gọn 52 Hình 2.9 Đồ thị hóa thời gian tính toán BC giải thuật Red-Bet số luồng thay đổi 56 Hình 2.10 Biểu diễn thời gian tính tốn BC với liệu ba giải pháp 57 Hình 3.1 Ví dụ cho mơ hình LT 63 Hình 3.2 Ví dụ cho mơ hình IC 64 Hình 3.3 Hình dạng hàm logistic .74 Hình 3.4 Sơ đồ khối trình xây dựng lan truyền 75 Hình 3.5 Hình dạng lan truyền 76 Hình 3.6 Biểu diễn chi tiết hiệu suất phương pháp chưa xét ảnh hưởng bên 80 Hình 3.7 Biểu diễn chi tiết hiệu suất phương pháp xuất ảnh hưởng bên 81 gian nghiên cứu, nghiên cứu Luận án cũng nhiều điểm CHƯA thể giải quyết chƯa ĐƯỢC đề cập đến Một sô điểm hạn chế co thể đƯợc liệt kê DƯỚi đây: - Nghiên cứu tang tôc đọ đô thị Luận án cịn ch Ưa thể tiến hành với thị mạng xa họi co quy mô siêu lớn nhƯ Facebook với hon hai tỷ đỉnh hon nghìn tỷ cạnh Nguyên nhân xuất phát tư giới hạn các bọ liệu thưc ĐƯợc cơng bơ cơng khai cịn hạn chế với liệu quy mô lớn nang lưc hệ thông tinh toán mà Nghiên cứu sinh co thể sư dụng cũng cho phép xư lý đ Ược với liệu quy mô siêu lớn nhƯ Vậy Ngồi ra, việc rút gọn tơi Ưu phạm vi Luận án - Nghiên cứu dư báo lan truyền thông tin Uớ ̛ c tinh anh hƯơng bên mọt bƯớc thời gian gia định anh hƯơng vẫn co tác đọng giữ nguyên cho bƯớc thời gian tiếp theo Do đo, no chƯa thể đƯợc sư dụng để dư đoán sớm với liệu lan truyền cập nhật liên tục phân tich liệu lớn Hướng phát triển tương lai Toàn bọ hạn chế đa nêu ĐƯợc Nghiên cứu sinh xác định nghiên cứu đƯợc trọng tiến hành thời gian tói, cụ thể: - Với vấn đề nâng cao tôc đọ dư báo lan truyền thông tin, co thể tập trung mơ rọng phƯong pháp để nâng cao tôc đọ tinh toán các phép đo khác phân tich đô thị mạng xa họi nhƯ đọ trung tâm gần, đọ trung tâm eigenvector, đọ trung tâm Pagerank , đông thời tiến hành phân tich đô thị phức tạp hon ứng dụng vào các toán phát hiện điểm nong, phát hiện cọng đông, hay toán dư báo lan truyền thông tin, - Với vấn đề nâng cao hiệu qua dư báo lan truyền, tiếp tục nghiên cứu sâu hon các khia cạnh anh hƯơng bên co thể tác đọng đến quá trình lan truyền Tức kiểm tra anh h Ương bên làm thay đổi cấu trúc lan truyền sư dụng sư thay đổi cấu trúc để dư đoán hình dạng kich thƯớc lan truyền - Chứng minh kết qua thưc nghiệm Luận án co thể ứng dụng vào hệ thông phân tich thông tin mạng xa họi nghiên cứu phƯong án áp dụng kết qua nghiên cứu để nâng cao hiệu nang hệ thông DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ C1 Duong Ngoc Son, Nguyen Ngoc Cuong, Nguyen Nhu Son (2019), Một phương pháp rút gọn đồ thị mạng xã hội dựa thay lớp đỉnh tương đương, The 22nd National Symposium of Selected ICT Problems, pp: 27 C2 Duong Ngoc Son, Nguyen Ngoc Cuong, Nguyen Nhu Son, Nguyen Ngoc Hoa (2020), Một phương pháp nâng cao hiệu tính tốn đồ thị, The 23rd National Symposium of Selected ICT Problems, pp: 60 C3 Du Phuong Hanh, Duong Ngoc Son, Nguyen Ngoc Cuong, Nguyen Ngoc Hoa (2020), A Fast Computation of Betweenness Centrality in LargeScale Unweighted Graphs, International Journal on Emerging Technologies 11(2): 370- 377 C4 Duong Ngoc Son, Nguyen Ngoc Cuong, Nguyen Ngoc Hoa, Du Phuong Hanh (2021), A RED-BET Method to Improve the Information Diffusion on Social Networks, International Journal of Advanced Computer Science and Applications, 12(8): 867-875 C5 Nguyen Viet Anh, Duong Ngoc Son, Nguyen Thi Thu Ha, Sergey Kuznetsov, Nguyen Tran Quoc Vinh (2018), A Method for determining information diffusion cascades on social networks, Eastern-European Journal of Enterprise Technologies, Vol 6, No (96), pp: 61-69 TÀI LIỆU THAM KHẢO Kim, J., Leem, C., Kim, B., & Cheon, Y (2013) Evolution of online social networks: A conceptual framework Asian Social Science, 9(4), 208-220 Sajithra, K., & Patil, R (2013) Social media–history and components Journal of Business and Management, 7(1), 69-74 Howard, P N., Duffy, A., Freelon, D., Hussain, M M., Mari, W., & Maziad, M (2011) Opening closed regimes: what was the role of social media during the Arab Spring? Information Technology and Political Islam, 1-30 Hughes, A L., & Palen, L (2009) Twitter adoption and use in mass convergence and emergency events International journal of emergency management, 6(3-4), 248-260 Rogers, E M (1962) (1995) Diffusion of innovations New York: Free Press Kaya, M., & Alhajj, R (Eds.) (2019) Influence and Behavior Analysis in Social Networks and Social Media Springer Li, N., & Wu, D D (2010) Using text mining and sentiment analysis for online forums hotspot detection and forecast Decision support systems, 48(2), 354-368 Duggirala, S (2018) NewSQL databases and scalable in-memory analytics In Advances in Computers (Vol 109, pp 49-76) Elsevier Mondal, J., & Deshpande, A (2012) Managing large dynamic graphs efficiently In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (pp 145-156) 10 Fortunato, S (2010) Community detection in graphs Physics reports, 486(3-5), 75-174 11 Newman, M E (2006) Modularity and community structure in networks Proceedings of the national academy of sciences, 103(23), 8577-8582 12 Guimerà, R., & Sales-Pardo, M (2009) Missing and spurious interactions and the reconstruction of complex networks Proceedings of the National Academy of Sciences, 106(52), 22073-22078 13 Domingos, P., & Richardson, M (2001, August) Mining the network value of customers In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp 57-66) 14 Yang, W., Brenner, L., & Giua, A (2018, April) Computation of activation probabilities in the independent cascade model In 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT) (pp 791-797) IEEE 15 Cohen, E., Delling, D., Pajor, T., & Werneck, R F (2014, November) Sketch-based influence maximization and computation: Scaling up with guarantees In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management (pp 629638) 16 Kempe, D., Kleinberg, J., & Tardos, É (2003, August) Maximizing the spread of influence through a social network In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp 137-146) 17 Lucier, B., Oren, J., & Singer, Y (2015, August) Influence at scale: Distributed computation of complex contagion in networks In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp 735-744) 18 Dinh, T N., Shen, Y., & Thai, M T (2012, October) The walls have ears: optimize sharing for visibility and privacy in online social networks In Proceedings of the 21st ACM international conference on Information and knowledge management (pp 1452-1461) 19 Shen, Y., Syu, Y S., Nguyen, D T., & Thai, M T (2012, June) Maximizing circle of trust in online social networks In Proceedings of the 23rd ACM conference on Hypertext and social media (pp 155-164) 20 Wu, L., Morstatter, F., Hu, X., & Liu, H (2016) Mining misinformation in social media Big data in complex and social networks, 123-152 21 Budak, C., Agrawal, D., & El Abbadi, A (2011, March) Limiting the spread of misinformation in social networks In Proceedings of the 20th international conference on World wide web (pp 665-674) 22 Nguyen, D T., Nguyen, N P., & Thai, M T (2012, October) Sources of misinformation in online social networks: Who to suspect? In MILCOM 2012-2012 IEEE Military Communications Conference (pp 1-6) IEEE 23 Zhang, H., Zhang, H., Li, X., & Thai, M T (2015, August) Limiting the spread of misinformation while effectively raising awareness in social networks In International Conference on Computational Social Networks (pp 35-47) Springer, Cham 24 Saraswathi, S., Mukhopadhyay, A., Shah, H., & Ranganath, T S (2020) Social network analysis of COVID-19 transmission in Karnataka, India Epidemiology & Infection, 148 25 Feder, T., & Motwani, R (1995) Clique partitions, graph compression and speeding-up algorithms Journal of Computer and System Sciences, 51(2), 261-272 26 Adler, M., & Mitzenmacher, M (2001, March) Towards compressing web graphs In Proceedings DCC 2001 Data Compression Conference (pp 203-212) IEEE 27 Gilbert, A C., & Levchenko, K (2004, August) Compressing network graphs In Proceedings of the LinkKDD workshop at the 10th ACM Conference on KDD (Vol 124) 28 Nguyen Xuan Dung, Luận án rút gọn đồ thị mạng xã hội đề xuất thuật toán lan truyền nhãn đồ thị rút gọn để phát cấu trúc cộng đồng, 2019 29 Du, P H., Nguyen, H C., Nguyen, K K., & Nguyen, N H (2018, December) An efficient parallel algorithm for computing the closeness centrality in social networks In Proceedings of the Ninth International Symposium on Information and Communication Technology (pp 456462) 30 Bernaschi, M., Carbone, G., & Vella, F (2015, November) Betweenness centrality on multi-GPU systems In Proceedings of the 5th Workshop on Irregular Applications: Architectures and Algorithms (pp 1-4) 31 Fan, R., Xu, K., & Zhao, J (2017) A GPU-based solution for fast calculation of the betweenness centrality in large weighted networks PeerJ Computer Science, 3, e140 32 McLaughlin, A., & Bader, D A (2018) Accelerating gpu betweenness centrality Communications of the ACM, 61(8), 85-92 33 Brandes, U (2001) A faster algorithm for betweenness centrality Journal of mathematical sociology, 25(2), 163-177 34 Mahmoody, A., Tsourakakis, C E., & Upfal, E (2016, August) Scalable betweenness centrality maximization via sampling In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp 1765-1773) 35 Riondato, M., & Kornaropoulos, E M (2016) Fast approximation of betweenness centrality through sampling Data Mining and Knowledge Discovery, 30(2), 438-475 36 Wei, J., Chen, K., Zhou, Y., Zhou, Q., & He, J (2016, March) Benchmarking of distributed computing engines spark and graphlab for big data analytics In 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService) (pp 1013) IEEE 37 Kwak, H., Lee, C., Park, H., & Moon, S (2010, April) What is Twitter, a social network or a news media? In Proceedings of the 19th international conference on World wide web (pp 591-600) 38 Haveliwala, T H (2002) Topic-sensitive pagerank In Proceedings of the 11th International Conference on World Wide Web (pp 517-526) 39 Weng, J., Lim, E P., Jiang, J., & He, Q (2010, February) Twitterrank: finding topic-sensitive influential twitterers In Proceedings of the third ACM international conference on Web search and data mining (pp 261270) 40 Myers, S A., Zhu, C., & Leskovec, J (2012, August) Information diffusion and external influence in networks In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp 33-41) 41 Wu, D., Li, C., & Lau, R Y (2015, October) Topic based information diffusion prediction model with external trends In 2015 IEEE 12th International Conference on e-Business Engineering (pp 29-36) IEEE 42 Szabo, G., & Huberman, B A (2010) Predicting the popularity of online content Communications of the ACM, 53(8), 80-88 43 Yang, J., & Leskovec, J (2010, December) Modeling information diffusion in implicit networks In 2010 IEEE International Conference on Data Mining (pp 599-608) IEEE 44 Ma, Z., Sun, A., & Cong, G (2013) On predicting the popularity of newly emerging hashtags in T witter Journal of the American Society for Information Science and Technology, 64(7), 1399-1410 45 Bakshy, E., Karrer, B., & Adamic, L A (2009, July) Social influence and the diffusion of user-created content In Proceedings of the 10th ACM conference on Electronic commerce (pp 325-334) 46 Jenders, M., Kasneci, G., & Naumann, F (2013, May) Analyzing and predicting viral tweets In Proceedings of the 22nd international conference on world wide web (pp 657-664) 47 Kupavskii, A., Ostroumova, L., Umnov, A., Usachev, S., Serdyukov, P., Gusev, G., & Kustarev, A (2012, October) Prediction of retweet cascade size over time In Proceedings of the 21st ACM international conference on Information and knowledge management (pp 2335-2338) 48 Zhang, L , Luo, M & Boncella, R J (2020) Product information diffusion in a social network, Electronic Commerce Research, 20(1), pp 3-19 49 Hinz, O., Skiera, B., Barrot, C & Becker, J U (2011) Seeding strategies for viral marketing: An empirical comparison, Journal of Marketing, 75(6), pp 55-71 50 Trudeau, R J (1994) Introduction to graph theory Dover Pubns 51 Wilson, R J (1979) Introduction to graph theory Pearson Education India 52 Sakr, S., & Pardede, E (2011) Graph data management: techniques and applications Information Science Reference-Imprint of: IGI Publishing 53 Buluỗ, A., Fineman, J T., Frigo, M., Gilbert, J R., & Leiserson, C E (2009, August) Parallel sparse matrix-vector and matrix-transposevector multiplication using compressed sparse blocks In Proceedings of the twenty-first annual symposium on Parallelism in algorithms and architectures (pp 233-244) 54 Sedgewick, R., & Flajolet, P (2013) An introduction to the analysis of algorithms Pearson Education India 55 Grama, A., Gupta, A., Karypis, G., & Kumar, V (2003) Principles of parallel algorithm design Introduction to Parallel Computing, 2nd ed Addison Wesley, Harlow 56 Asanovic, K., Bodik, R., Catanzaro, B C., Gebis, J J., Husbands, P., Keutzer, K., & Yelick, K A (2006) The landscape of parallel computing research: A view from berkeley, EECS Technical Report UCB/EECS-2006-183 57 Adve, S., Adve, V S., Agha, G., Frank, M I., Garzarán, M J., Hart, J C., & Zilles, C (2008) Parallel computing research at Illinois: The UPCRC agenda Urbana, IL: Univ Illinois Urbana-Champaign 58 Trobec, R., Slivnik, B., Bulic, P., & Robic, B (2018) Introduction to Parallel Computing: From Algorithms to Programming on State-of-Art Platforms Springer 59 Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., & Yelick, K (2009) A view of the parallel computing landscape Communications of the ACM, 52(10), 56-67 60 Al-hayanni, M A N., Xia, F., Rafiev, A., Romanovsky, A., Shafik, R., & Yakovlev, A (2020) Amdahl's law in the context of heterogeneous many- core systems–a survey IET Computers & Digital Techniques, 14(4), 133- 148 61 Lim, S., Jung, I., Lee, S., & Jung, K (2015) Analysis of information diffusion for threshold models on arbitrary networks The European Physical Journal B, 88(8), 1-14 62 Kim, J., Lee, W., & Yu, H (2014) CT-IC: Continuously activated and time-restricted independent cascade model for viral marketing Knowledge-Based Systems, 62, 57-68 63 Chen, W., Castillo, C., & Lakshmanan, L V (2013) Information and Influence Propagation in Social Networks Morgan & Claypool Publishers 64 Li, Y., Fan, J., Wang, Y., & Tan, K L (2018) Influence maximization on social graphs: A survey IEEE Transactions on Knowledge and Data Engineering, 30(10), 1852-1872 65 Saito, K., Kimura, M., Ohara, K., & Motoda, H (2009, November) Learning continuous-time information diffusion model for social behavioral data analysis In Asian Conference on Machine Learning (pp 322-337) Springer, Berlin, Heidelberg 66 Saito, K., Ohara, K., Yamagishi, Y., Kimura, M., & Motoda, H (2011, June) Learning diffusion probability based on node attributes in social networks In International Symposium on Methodologies for Intelligent Systems (pp 153-162) Springer, Berlin, Heidelberg 67 Rodriguez, M G., Balduzzi, D., & Schölkopf, B (2011) Uncovering the temporal dynamics of diffusion networks In Proceedings of the 28th International Conference on Machine Learning, ICML '11 (pp 561-568) 68 Chen, W., Collins, A., Cummings, R., Ke, T., Liu, Z., Rincon, D., & Yuan, Y (2011, April) Influence maximization in social networks when negative opinions may emerge and propagate In Proceedings of the 2011 siam international conference on data mining (pp 379-390) Society for Industrial and Applied Mathematics 69 Barbieri, N., Bonchi, F., & Manco, G (2013) Topic-aware social influence propagation models In Proceedings of the 12th International Conference in Data Mining (pp 81-90) IEEE 70 Li, Y., Chen, W., Wang, Y., & Zhang, Z L (2013, February) Influence diffusion dynamics and influence maximization in social networks with friend and foe relationships In Proceedings of the sixth ACM international conference on Web search and data mining (pp 657-666) 71 Du, N., Liang, Y., Balcan, M F., Gomez-Rodriguez, M., Zha, H., & Song, L (2017) Scalable Influence Maximization for Multiple Products in Continuous-Time Diffusion Networks J Mach Learn Res., 18(2), 1-45 72 Du, N., Song, L., Gomez-Rodriguez, M., & Zha, H (2013) Scalable influence estimation in continuous-time diffusion networks Advances in neural information processing systems, 26, 3147-3155 73 Li, Y., Zhang, D., & Tan, K L (2015) Real-time Targeted Influence Maximization for Online Advertisements Proceedings of the VLDB Endowment, 8(10), 1070-1081 74 Kurka, D B., Godoy, A., & Von Zuben, F J (2015) Online social network analysis: A survey of research applications in computer science arXiv preprint arXiv:1504.05655 75 Wasserman, S., & Faust, K (1994) Social Network Analysis: Methods and Applications., Cambridge University Press 76 Farooq, A., Joyia, G J., Uzair, M., & Akram, U (2018, March) Detection of influential nodes using social networks analysis based on network metrics In 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (pp 1-6) IEEE 77 Kumar, P & Sinha, A (2021) Information diffusion modeling and analysis for socially interacting networks, Social Network Analysis and Mining 11(1), pp 1-18 78 Alhajj, R., & Rokne, J (2014) Encyclopedia of social network analysis and mining Springer 79 Freeman, L C (1977) A set of measures of centrality based on betweenness Sociometry, 35-41 80 Cormen, T H., Leiserson, C E., Rivest, R L., & Stein, C (2009) Introduction to Algorithms, 3rd-edition MIT Press and McGraw-Hill 81 Even, S (2011) Graph algorithms Cambridge University Press 82 Goodrich, M T., Tamassia, R., & Goldwasser, M H (2014) Data structures and algorithms in Java John Wiley & Sons 83 Dijkstra, E W (1959) A note on two problems in connexion with graphs Numerische mathematik, 1(1), 269-271 84 Kaya, M., Kawash, J., Khoury, S., & Day, M Y (Eds.) (2018) Social Network Based Big Data Analysis and Applications Springer 85 Holte, R C., Felner, A., Sharon, G., Sturtevant, N R., & Chen, J (2017) MM: A bidirectional search algorithm that is guaranteed to meet in the middle Artificial Intelligence, 252, 232-266 86 Tsvetovat, M., & Kouznetsov, A (2011) Social Network Analysis for Startups: Finding connections on the social web " O'Reilly Media, Inc." 87 Boldi, P., & Vigna, S (2014) Axioms for centrality Internet Mathematics, 10(3-4), 222-262 88 Kim, J., & Lee, J G (2015) Community detection in multi-layer graphs: A survey ACM SIGMOD Record, 44(3), 37-48 89 Leist, A., & Gilman, A (2014) A comparative analysis of parallel programming models for c++, In The 9th International Multi-Conference on Computing in the Global Information Technology (pp 121-127) 90 Rossetti, G., Mill, L., Rinzivillo, S., Sirbu, A., Pedreschi, D & Giannotti, F (2018) NDlib: a python library to model and analyze diffusion processes over complex networks, International Journal of Data Science and Analytics 5(1), pp 61-79 91 Frigo, M., Halpern, P., Leiserson, C E., & Lewin-Berlin, S (2009, August) Reducers and other Cilk++ hyperobjects In Proceedings of the twenty-first annual symposium on Parallelism in algorithms and architectures (pp 79-90) 92 Yakovleva, O V., Rudakov, I V., & Stroganov, Y V (2019, December) Predict post spreading in online social networks based on independent cascade model In Journal of Physics: Conference Series (Vol 1419, No 1, p 012017) IOP Publishing 93 Newman, M E (2002) Spread of epidemic disease on networks Physical review E, 66(1), 016128 94 Chen, W., Wang, C., & Wang, Y (2010, July) Scalable influence maximization for prevalent viral marketing in large-scale social networks In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (pp 1029-1038) 95 Borgs, C., Brautbar, M., Chayes, J., & Lucier, B (2014, January) Maximizing social influence in nearly optimal time In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms (pp 946-957) Society for Industrial and Applied Mathematics 96 Nguyen, H T., Thai, M T., & Dinh, T N (2016, June) Stop-and-stare: Optimal sampling algorithms for viral marketing in billion-scale networks In Proceedings of the 2016 International Conference on Management of Data (pp 695-710) 97 Tang, Y., Shi, Y., & Xiao, X (2015, May) Influence maximization in near-linear time: A martingale approach In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (pp 1539- 1554) 98 Tang, Y., Xiao, X., & Shi, Y (2014, June) Influence maximization: Near- optimal time complexity meets practical efficiency In Proceedings of the 2014 ACM SIGMOD international conference on Management of data (pp 75-86) 99 Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., & Ghahramani, Z (2010) Kronecker Graphs: An Approach to Modeling Networks Journal of Machine Learning Research, 11, 985-1042 100 Bi, B., Tian, Y., Sismanis, Y., Balmin, A., & Cho, J (2014, February) Scalable topic-specific influence analysis on microblogs In Proceedings of the 7th ACM international conference on Web search and data mining (pp 513-522) 101 Du, N., Song, L., Woo, H., & Zha, H (2013, April) Uncover topicsensitive information diffusion networks In Artificial Intelligence and Statistics (pp 229-237) PMLR 102 Pramanik, S., Wang, Q., Danisch, M., Guillaume, J L., & Mitra, B (2017) Modeling cascade formation in Twitter amidst mentions and retweets Social Network Analysis and Mining, 7(1), 1-18 103 Gomez-Rodriguez, M., Leskovec, J., & Krause, A (2012) Inferring networks of diffusion and influence ACM Transactions on Knowledge Discovery from Data (TKDD), 5(4), 1-37 104 Bakshy, E., Hofman, J M., Mason, W A., & Watts, D J (2011, February) Everyone's an influencer: quantifying influence on twitter In Proceedings of the fourth ACM international conference on Web search and data mining (pp 65-74) 105 Matsubara, Y., Sakurai, Y., Prakash, B A., Li, L., & Faloutsos, C (2012, August) Rise and fall patterns of information diffusion: model and implications In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp 6-14) 106 Hui, C., Tyshchuk, Y., Wallace, W A., Magdon-Ismail, M., & Goldberg, M (2012, April) Information cascades in social media in response to a crisis: a preliminary model and a case study In Proceedings of the 21st International Conference on World Wide Web (pp 653-656) 107 Zhang, J., Liu, B., Tang, J., Chen, T., & Li, J (2013, August) Social influence locality for modeling retweeting behaviors In IJCAI (Vol 13, pp 2761-2767) 108 Suh, B., Hong, L., Pirolli, P., & Chi, E H (2010, August) Want to be retweeted? large scale analytics on factors impacting retweet in twitter network In 2010 IEEE Second International Conference on Social Computing (pp 177-184) IEEE ... ….***………… DƯƠNG NGỌC SƠN MỘT SỐ PHƯƠNG PHÁP NÂNG CAO HIỆU QUẢ DỰ BÁO LAN TRUYỀN THÔNG TIN TRÊN MẠNG XÃ HỘI LUẬN ÁN TIẾN SĨ NGÀNH MÁY TÍNH Chuyên ngành : Hệ thống thông tin Mã số: 48 01 04 Người hướng... bày Nâng cao tôc đọ dư báo lan truyền thông tin ChƯơng III trình bày Nâng cao đọ chinh xác dư báo lan truyền thông tin mạng xa hội Chương II NÂNG CAO TỐC ĐỘ DỰ BÁO LAN TRUYỀN THÔNG TIN. .. Chương I TỔNG QUAN VỀ LAN TRUYỀN THÔNG TIN TRÊN MẠNG XÃ HỘI 1.1 Mạng xa họi lan truyền thông tin mạng xa họi 1.1.1 Mạng xa họi 1.1.2 Lan truyền thông tin mạng xa họi 1.2

Ngày đăng: 18/02/2022, 21:41

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w