KHÔNG GIAN EUCLID
... y, z là he ätrực giao 23. Trong không gian R cho không gian c ⊥ ⊥ ⊥ = = = < >⇒ =< > { } 1 2 3 1 2 3 3 on : F = (x ,x ,x ) x x x Tìm tất cả m để không gian < 1,1, m > trực giao ... sở của F ⊥ ⊥ ⊥ ⊥ 3 3 18. Trong R cho 2 không gian con F và G, biết F G. Kđn đúng. a/ G F b/ F G c/ (F G) F G d/ (F + G) = F + G 19. Trong R cho 2 không gian con F = < (1, 1,...
Ngày tải lên: 11/10/2013, 09:12
Không gian Euclide Rn
... gian Euclide R n 5.1 D - i . nh ngh˜ıa khˆong gian n-chiˆe ` uv`amˆo . tsˆo ´ kh´ai niˆe . mco . ba ’ nvˆe ` vecto . 177 5.2 Co . so . ’ .D - ˆo ’ ico . so . ’ 188 5.3 Khˆong gian vecto . Euclid. ... d 4,− 5 3 ,− 14 3 ) 5.3 Khˆong gian vecto . Euclid. Co . so . ’ tru . . c chuˆa ’ n Khˆong gian tuyˆe ´ n t´ınh thu . . c V d u . o . . cgo . i l`a khˆong gian Euclid nˆe ´...
Ngày tải lên: 19/10/2013, 01:20
... trực chuẩn. 1.11. Không gian Ơclit Định nghĩa. Không gian Ơclit là không gian Afin liên kết với không gian vectơ Ơclit hữu hạn chiều. Không gian Ơclit sẽ gọi là n- chiều nếu không gian vectơ Ơclít ... ba (A,,V) là không gian afin A liên kết với không gian vectơ V. Ký hiệu là A Nếu K = R ta gọi A là không gian Afin thực. Nếu K = C ta gọi A là không gian...
Ngày tải lên: 19/12/2013, 15:06
... m Thực vậy có thể coi M 1 , M 2 , ,M m nằm trong một không gian Euclide m chiều và đặt m = n rồi xét một mục tiêu Euclide ( I, e1, en ) của không gian đó, gọi )( j x là toạ độ của điểm M ( j = ... cũng nh các tính chất của siêu mặt bậc II, nếu trang bị thêm tích vô hớng để không gian afin trở thành không gian Euclide thì có các tính toán về l- ợng trên siêu cầu. Nội dung n...
Ngày tải lên: 22/12/2013, 12:54
Về một số đường trên siêu mặt trong không gian euclid n chiều en
... siêu mặt TRONG E n 1.1.Mảnh tham số: Định nghĩa: ánh xạ r từ một tập mở U trong R n - 1 vào không gian Euclid n - chiều E n : r: U E n 3 Vậy, mặt trụ các đơng tiệm cận là các đờng toạ độ. 4.3.2. ... bạn bè đã giúp đỡ tôi trong quá trình làm luận văn. Do sự hạn chế về thời gian cũng nh năng lực của bản thân nên luận văn không tránh khỏi những thiếu sót, rất mong đợc sự quan tâm đ...
Ngày tải lên: 23/12/2013, 19:12
Tài liệu Chương 4. KHÔNG GIAN EUCLIDE pdf
... Chương 4. KHÔNG GIAN EUCLIDE 4.1. Không gian Euclide 4.1.1. Các định nghĩa và ví dụ. Định nghĩa 1: Cho V – KGVT trên R. Ta ... < , >) là KGVT Euclide. 4.1.2. Độ dài và góc trong không gian Euclide, các bất đẳng thức. Định nghĩa 3: Cho (V, < , >) – KG Euclide. Với mỗi u V ta định nghĩa và ký hiệu độ dài ... nghĩa 2: KGVT V có trang bị một tích vô hướng gọi là KG...
Ngày tải lên: 18/02/2014, 02:20
Chương 4. KHÔNG GIAN EUCLIDE doc
... Chương 4. KHÔNG GIAN EUCLIDE 4.1. Không gian Euclide 4.1.1. Các định nghĩa và ví dụ. Định nghĩa 1: Cho V – KGVT trên R. Ta ... < , >) là KGVT Euclide. 4.1.2. Độ dài và góc trong không gian Euclide, các bất đẳng thức. Định nghĩa 3: Cho (V, < , >) – KG Euclide. Với mỗi u V ta định nghĩa và ký hiệu độ dài ... nghĩa 2: KGVT V có trang bị một tích vô hướng gọi là KG...
Ngày tải lên: 23/03/2014, 02:20
bài giảng không gian euclide
... = 19 4 TS. Lê Xuân Đại (BK TPHCM) KHÔNG GIAN EUCLIDE TP. HCM — 2013. 13 / 56 Không gian Euclide Độ dài véctơ (chuẩn của véctơ) Định nghĩa Cho x ∈ E , trong đó E là không gian Euclide, ta gọi độ dài hay ... ||u|| = √ 11 TS. Lê Xuân Đại (BK TPHCM) KHÔNG GIAN EUCLIDE TP. HCM — 2013. 15 / 56 Không gian Euclide Khoảng cách giữa hai véctơ Định nghĩa Trong không gian Euclide E ,...
Ngày tải lên: 02/04/2014, 15:16
Các hàm dung lượng trong không gian Euclid hữu hạn chiều và tích phân Choquet của chúng
... 1 . Chú ý rằng E là một không gian Ba Lan không compact địa phương. Vì vậy, theo Định lý 3.1.1 không gian F với tôpô miss-and-hit không phải là Hausdorff. Nếu muốn F là một không gian tôpô Hausdorff ... hàm không cộng tính đã được thiết lập trên các không gian Ba Lan (không gian metric khả li, đầy đủ) nhưng các nghiên cứu cơ bản về chúng chỉ thực sự có ý nghĩa khi đ...
Ngày tải lên: 03/04/2014, 21:42
Tài liệu Bài tập về không gian vecto Euclide doc
... mọi hệ véctơ trực giao không chứa véctơ không đều độc lập tuyến tính. Giải. Giả sử α 1 , . . . , α m là hệ trực giao, không chứa véctơ không (α i = 0) của không gian véctơ Euclide và giả sử m j=1 a j α j = ... giao, cơ sở trực chuẩn của không gian con L ⊥ của R 4 , biết L là các không gian con dưới đây: a. L = α 1 , α 2 với α 1 = (1, 0,−1, 2), α 2 = (−1, 1, 0,−1) b....
Ngày tải lên: 11/12/2013, 15:15