Định lí Mordell

Một phần của tài liệu Điểm hữu tỉ trên đường cong bậc hai, đường cong bậc ba : Khóa luận tốt nghiệp toán học (Trang 36 - 37)

2 ĐIỂM HỮU TỈ TRÊN ĐƯỜNG CONG BẬC HAI

3.6.3 Định lí Mordell

Định lí 3.6.1 ([2, tr. 88]). Nhóm các điểm hữu tỉ trên đường cong elliptic (E(Q),+) là một nhóm aben hữu hạn sinh.

Việc chứng minh đòi hỏi phải xây dựng rất nhiều lý thuyết toán có liên quan, vì vậy ta sẽ không đề cập phần chứng minh ở đây, chúng ta có thể tham khảo phần chứng minh ở các tài liệu [2, tr. 83].

Như vậy theo định lí này nhóm các điểm hữu tỉ trên đường cong elliptic E(Q) có tập sinh hữu hạn. Nghĩa là mỗi điểm hữu tỉ trên đường cong có thể nhận được từ một tập hữu hạn các điểm hữu tỉ bằng cách sử dụng một tổ hợp nào đó của các giao tuyến và tiếp tuyến. Như vậy nhóm các điểm hữu tỉ trên đường cong elliptic hoàn toàn khác với nhóm các điểm hữu tỉ trên đường cong bậc ba kỳ dị.

Vấn đề là cần bao nhiêu điểm hữu tỉ để xây dựng tất cả các điểm hữu tỉ. Vì E(Q) là nhóm aben hữu hạn sinh nên nó là tổng trực tiếp của một nhóm hữu hạn và một nhóm aben tự do hữu hạn sinh, hạng của nhóm aben tự do hữu hạn sinh này được gọi là hạng của đường cong elliptic.

Tất cả các điểm có bậc hữu hạn của E(Q) lập thành nhóm TorsE(Q) gọi là nhóm con xoắn của E(Q). Khi đó E(Q) là tổng trực tiếp của TorsE(Q), với nhóm con các điểm có bậc vô hạn. Nhóm con các điểm có bậc vô hạn là nhóm hữu hạn sinh nên nó đẳng cấu với Zr, với r được gọi là hạng của đường cong elliptic và nó là một số nguyên không âm. Ta có

E(Q)≡TorsE(Q)MZr.

Ta có một định lý (3.7.1) cho phép tìm các điểm có bậc hữu hạn của E(Q) từ đó tìm được TorsE(Q), còn vấn đề tìm hạng của đường cong là vấn đề cực kỳ khó mà ta không đề cập ở đây. Nếu đường cong có hạng bằng 0 thì E(Q) là nhóm hữu hạn, nếu hạng khác 0 thì E(Q) có vô hạn phần tử.

Một phần của tài liệu Điểm hữu tỉ trên đường cong bậc hai, đường cong bậc ba : Khóa luận tốt nghiệp toán học (Trang 36 - 37)

Tải bản đầy đủ (PDF)

(50 trang)