Phương pháp xử lý dữ liệu

Một phần của tài liệu Nghiên cứu các nhân tố ảnh hưởng đến nhu cầu ứng dụng công nghệ vào hệ thống thông tin kế toán tại việt nam (Trang 35 - 40)

CHƯƠNG 3: MÔ HÌNH VÀ PHƯƠNG PHÁP NGHIÊN CỨU

3.3. Phương pháp xử lý dữ liệu

Sau khi tiến hành khảo sát, nhóm tập hợp lại và mã hóa trên công cụ Excel trước khi nhập dữ liệu và PM SPSS.

3.3.2. Phân tích hệ số tin cậy của thang đo

Để xem xét độ tin cậy của thang đo, tác giả sử dụng hệ số Cronbach’s Alpha.

“Phương pháp này cho phép người phân tích loại bỏ các biến không phù hợp và hạn chế các biến trong quá trình NC và đánh giá độ tin cậy của thang đo bằng hệ số thông qua hệ số Cronbach’s Alpha”. Nunnally & Bernstein (1994) cho rằng “một biến đo lường có hệ số tương quan biến - tổng (Corrected item-total correlation) ≥ 0.30 thì biến đó đạt yêu cầu; thang đo có Cronbach’s Alpha ≥ 0.60 là thang đo chấp nhận được về mặt độ tin cậy”. DeVellis (1990) cho rằng “chỉ số Cronbach alpha nên từ 0.70 trở lên, song giá trị tối thiểu để thước đo có thể sử dụng là 0.63”.

Trong bài NC này, GOA sẽ loại đi những thang đo có hệ số Cronbach’s Alpha < 0.6.

Những biến quan sát có hệ số tương quan biến tổng < 0.3 hoặc có hệ số Cronbach's Alpha if Item Deleted lớn hơn hệ số Cronbach’s Alpha của biến tổng sẽ bị loại bỏ.

3.3.3. Phân tích thành phần chính (PCA)

GOA chọn PM SPSS 20 để phân tích thành phần chính PCA Bước 1: Tra soát yêu cầu để sử dụng được PCA

- Về kích thước mẫu

Dưới đây là một vài ý kiến được đề nghị từ các chuyên gia về phân tích nhân tố, như sau:

i) Theo (2008), “số lượng quan sát (cỡ mẫu) ít nhất phải gấp 4 đến 5 lần số biến trong phân tích nhân tố”.

ii) Hair et al. (2009) cho rằng “để có thể sử dụng PCA, kích thước mẫu tối thiểu phải là 50, tốt hơn nên là 100 từ đó nên cố gắng tối đa hóa tỷ lệ quan sát trên mỗi biến đo lường là 5:1, có nghĩa là cứ 1 biến đo lường thì cần tối thiểu là 5 quan sát”.

iii) Theo Stevens (2002), “một nhân tố được gọi là tin cậy nếu nhân tố này có từ 3 biến đo lường trở lên”.

- Kiểm định KMO:

Kiểm định KMO (Kaiser – Meyer - Olkin) là “chỉ số dùng để so sánh độ lớn của hệ số tương quan giữa 2 biến Xi và Xj với hệ số tương quan riêng phần của chúng”.

Kaiser (1974) đề nghị:

KMO >= 0.90 “Rất tốt”

0.80 <= KMO < 0.90 “Tốt”

0.70 <= KMO < 0.80 “Được”

0.60 <= KMO < 0.70 “Tạm được”

0.50 <=KMO < 0.60 “Xấu”

KMO < 0. 50 “Không chấp nhận được”

Hoàng Trọng & Chu Nguyễn Mộng Ngọc (2008) kết luận “Trị số của KMO lớn (giữa 0.5 và 1) là điều kiện đủ để phân tích nhân tố là thích hợp, còn nếu như trị số này

< 0.5 thì phân tích nhân tố có khả năng không thích hợp với các dữ liệu”

- Kiểm định Bartlett

“Kiểm định Bartlett dùng để xem xét giả thuyết các biến không có tương quan trong tổng thể. Kiểm định Bartlett phải có ý nghĩa thống kê (Sig ≤ 0.05) thì các biến quan sát có tương quan với nhau trong tổng thể” - Hoàng Trọng & Chu Nguyễn Mộng Ngọc (2008)

Bước 2: Rút trích các nhân tố.

Nguyễn Đình Thọ (2011) cho rằng “Hệ số tải Factor loadings là những hệ số tương quan đơn giữa các biến và các nhân tố. Hệ số này < 0.5 trong PCA sẽ tiếp tục bị loại để đảm bảo giá trị hội tụ giữa các biến. Phương pháp trích hệ số sử dụng là Principal components và điểm dừng khi trích các nhân tố có Eigenvalue lớn hơn 1, tổng phương sai trích bằng hoặc lớn hơn 50%”.

Theo Hair & ctg (2009,116), Multivariate Data Analysis, 7th Edition thì “Factor loading là chỉ tiêu để đảm bảo mức ý nghĩa thiết thực của PCA:

● Factor Loading ở mức ± 0.3: Điều kiện tối thiểu để biến quan sát được giữ lại.

● Factor Loading ở mức ± 0.5: Biến quan sát có ý nghĩa thống kê tốt.

● Factor Loading ở mức ± 0.7: Biến quan sát có ý nghĩa thống kê rất tốt.

Trong bài NC này, GOA sử dụng hệ số tải Factor Loading bằng 0,5 trong phân tích nhân tố PCA”.

Bước 3: Phân tích kết quả rút trích các nhân tố.

Từ bảng “Rotated Component Matrix”, loại bỏ dần các biến có hệ số tải Factor Loading <0.5 và chạy lại PCA. Nếu tất cả các biến đều có Factor Loading > 0.5 thì kết quả có ý nghĩa thực tiễn.

Bước 4: Đặt tên và diễn giải ý nghĩa của các nhân tố.

Sau khi phân tích dữ liệu, rút ra các nhân tố nếu có factor loading > 0.5 và đặt tên cho các nhân tố tìm được.

Bước 5: Kiểm tra độ tin cậy của các nhân tố sau khi được rút trích.

Loại bỏ các nhân tố có hệ số Cronbach’s Alpha < 0.6 và các biến quan sát có hệ số tương quan biến tổng <0.3.

3.3.4. Phân tích tương quan Pearson

Lý thuyết về Phân tích tương quan Pearso được hệ thống như sauHệ số tương quan Pearson (Pearson correlation coefficient, kí hiệu r) đo lường mức độ tương quan tuyến tính giữa hai biến. Giá trị Pearson Correlation là giá trị r để xem xét sự tương thuận hay nghịch, mạnh hay yếu giữa 2 biến.

Giá trị Sig kiểm định mối tương quan giữa 2 biến là có ý nghĩa hay không. Sig <

0.05 nghĩa là tương quan có ý nghĩa; Sig ≥ 0.05 nghĩa là tương quan không có ý nghĩa.

Nếu 2 biến độc lập có giá trị Sig < 0.05 và hệ số tương quan Pearson r khá lớn, khoảng từ 0.4 trở lên, chúng ta cần đặt nghi vấn có khả năng xảy ra đa cộng tuyến giữa 2 biến này. Nghi vấn này sẽ được trả lời dựa vào hệ số VIF khi phân tích hồi quy tuyến tính đa biến.”

3.3.5. Phân tích hồi quy tuyến tính đa biến

Lý thuyết về hồi quy tuyến tính đa biến chỉ ra rằng “Mức độ ảnh hưởng của các nhân tố sẽ được thể hiện qua các con số trong phương trình hồi quy. Những nhân tố nào có hệ số Beta lớn hơn sẽ có mức độ ảnh hưởng lớn hơn. Những nhân tố có hệ số Beta âm sẽ ảnh hưởng ngược chiều và ngược lại. Giá trị R2 (R Square), R2 hiệu chỉnh (Adjusted R Square) phản ánh mức độ giải thích biến phụ thuộc của các biến độc lập trong mô hình hồi quy. Mức dao động của 2 giá trị này là từ 0 đến 1, giá trị này nằm trong bảng Model Summary.

Trị số Durbin – Watson (DW) dùng để kiểm tra hiện tượng tự tương quan chuỗi bậc nhất (kiểm định tương quan của các sai số kề nhau). DW có giá trị biến thiên trong khoảng từ 0 đến 4; nếu các phần sai số không có tương quan chuỗi bậc nhất với nhau thì giá trị sẽ gần bằng 2, nếu giá trị càng nhỏ, gần về 0 thì các phần sai số có tương quan thuận; nếu càng lớn, gần về 4 có nghĩa là các phần sai số có tương quan nghịch. Theo Field (2009), nếu DW < 1 và lớn hơn 3, chúng ta cần thực sự lưu ý bởi khả năng rất cao xảy ra hiện tượng tự tương quan chuỗi bậc nhất. Theo Yahua Qiao (2011), thường giá trị DW nằm trong khoảng 1.5 – 2.5 sẽ không xảy ra hiện tượng tự tương quan chuỗi bậc

nhất, đây cũng là mức giá trị tiêu chuẩn thường được sử dụng phổ biến hiện nay. Giá trị này nằm trong bảng Model Summary.

Giá trị Sig của kiểm định F được sử dụng để kiểm định độ phù hợp của mô hình hồi quy. Nếu Sig < 0.05 thì mô hình hồi quy tuyến tính bội phù hợp với tập dữ liệu và có thể sử dụng được. Giá trị này nằm trong bảng ANOVA.

Giá trị Sig của kiểm định T được sử dụng để kiểm định ý nghĩa của hệ số hồi quy. Nếu sig kiểm định t của hệ số hồi quy của một biến độc lập nhỏ hơn 0.05 thì biến độc lập đó có tác động đến biến phụ thuộc. Mỗi biến độc lập tương ứng với một hệ số hồi quy riêng, do vậy mà ta cũng có từng kiểm định t riêng. Giá trị này thường nằm trong bảng Coefficients.

Hệ số phóng đại phương sai VIF dùng để kiểm tra hiện tượng đa cộng tuyến.

Theo Nguyễn Đình Thọ (2011): nếu hệ số VIF của một biến độc lập lớn hơn 10 nghĩa là có đa cộng tuyến xảy ra, biến độc lập này không có giá trị giải thích cho biến phụ thuộc. Kiểm tra giả định về hiện tượng đa cộng tuyến (tương quan giữa các biến độc lập) thông qua giá trị của độ chấp nhận (Tolerance) hoặc hệ số phóng đại phương sai VIF (Variance inflation factor): VIF > 10 thì có thể nhận xét có hiện tượng đa cộng tuyến (Hoàng Trọng & Chu Nguyễn Mộng Ngọc, 2005). Thực tế thường so sánh VIF với 2. Giá trị này nằm trong bảng Coefficients”.

Một phần của tài liệu Nghiên cứu các nhân tố ảnh hưởng đến nhu cầu ứng dụng công nghệ vào hệ thống thông tin kế toán tại việt nam (Trang 35 - 40)

Tải bản đầy đủ (PDF)

(86 trang)