CHƯƠNG 2: THỰC TRẠNG CƠ CẤU VỐN CỦA CÁC DOANH NGHIÊP DỊCH VỤ DU LỊCH TẠI THÀNH PHỐ HUẾ
2.6. Phân tích tác động của các nhân tố ảnh hưởng đến hiệu quả tài chính của
2.6.3. Các phương pháp ước lượng mô hình
Phương pháp bình phương nhỏ nhất (ordinary least squares-OLS) Đề tài sử dụng kỹ thuật phân tích dữ liệu dữ liệu bảng với mô hình như sau:
Yit = C + X1it + β2X2it + …+ βnXnit + uit Với i, t N*
Trong đó:
Yit là biến phụ thuộc với i: thực thể (DN), và t là thời gian (năm)
55
X1it,…, Xnit là giá trị biến độc lập đại diện cho các nhân tố ảnh hưởng đến cơ cấu vốn của DN i vào thời kỳ t.
Uit là phần dư.
Mô hình này sử dụng phương pháp bình phương nhỏ nhất (OLS) và có giả định rằng không có đơn vị chéo đặc biệt nào hoặc thời kỳ đặc biệt nào ảnh hưởng đến các hệ số trong mô hình. Ưu điểm của mô hình này là khá đơn giản và quen thuộc, tuy nhiên giả định của mô hình đã ràng buộc quá chặt về các đơn vị chéo, điều này khó xảy ra trong thực tế và dễ mắc phải hiện tượng tự tương quan, thể hiện ở kiểm định Durbin – Watson.
Và hướng tiếp cận tác động cố định (Fixed effects) hoặc ngẫu nhiên (Random effects) sẽ giúp giải quyết vấn đề trên.
Mô hình các ảnh hưởng cố định (Fixed effect model):
Thuật ngữ “các ảnh hưởng cố định” này là do: cho dù tung độ gốc có thể khác nhau đối với các DN nhưng tung độ gốc mỗi DN không đổi theo thời gian, nghĩa là bất biến theo thời gian. Vậy tung độ gốc (ảnh hưởng cố định) của các DN khác nhau như thế nào thì thông qua kĩ thuật biến giả mà cụ thể là biến giả tung độ gốc khác biệt sẽ giúp đề tài có câu trả lời.
Mô hình ảnh hưởng cố định như sau:
Yit = Ci + β1X1it + β2X2it + ….+βkXkit + uit
Hoặc Yit = α0 + α1D1i + α2D2i + …+ αnDni + β1X1it + β2X2it +…+ βkXkit + uit Ước lượng ảnh hưởng cố định cũng được xem như là phương pháp bình phương bé nhất có chứa biến giả bởi vì để cho phép xuất hiện các hệ số chặn khác nhau cho mỗi thực thể thì mỗi thực thể phải bao gồm một biến giả.
Tuy vậy, nhược điểm của mô hình FEM là giảm bậc tự do đi rất nhiều do phải đưa thêm biến giả vào, dễ xảy ra hiện tượng đa cộng tuyến hoặc vi phạm giả thiết uit
~ N (0,σ2 ), Gujaranti (2004, trang 646). Và nếu những đặc điểm riêng biệt (không đổi theo thời gian) là đơn nhất đối với một thực thể và không tương quan với đặc điểm của các thực thể khác. Nếu điều này xảy ra, mô hình FEM không còn thích hợp và khi đó mô hình ảnh hưởng ngẫu nhiên – REM được sử dụng để ước lượng mối quan hệ đó.
56
Mô hình tác động ngẫu nhiên ( Random effects model) Yit = C0i + β1Xit + uit
Hệ số trục tung trong phương trình trên được phân tích thành 2 phần : C0i = C0 + εi
Viết lại phương trình (2) như sau:
Yit = C0 + C1Xit +wit
Điểm khác nhau cơ bản giữa mô hình FEM và REM là mô hình FEM sẽ có từng hệ số trục tung khác nhau cho từng đơn vị chéo, trong khi mô hình tác động ngẫu nhiên (REM) chỉ có một giá trị hệ số trục tung duy nhất và hệ số này bằng với giá trị trung bình của tất cả các đơn vị chéo quan sát, sự khác biệt của các đơn vị chéo chứa đựng trong thành phần sai số ngẫu nhiên εi.
Việc lựa chọn mô hình, đề tài phải xem xét kiểm định Durbin – Watson để xem xét có hiện tượng tự tương quan hay không (theo lý thuyết nếu 1<d<3 thì không xảy ra hiện tượng tự tương quan).
Cuối cùng, sử dụng kiểm định Hausman nhằm lựa chọn phương pháp FEM hay REM phù hợp cho hồi quy dữ liệu mẫu, với giả thiết:
H0 : ước lượng mô hình FEM và mô hình REM không khác nhau. (Prob>λ2)
<α; bác bỏ H0.
Nếu bác bỏ H0 thì kết luận mô hình ảnh hưởng ngẫu nhiên không phù hợp và trong trường hợp này FEM được lựa chọn sử dụng, còn ngược lại chấp nhận H0 thì mô hình REM được sử dụng.
Kiểm định LM của Breusch – Pagan: là kiểm định nhằm lựa chọn mô hình REM hay OLS, dựa trên giả định phương sai của các sai số ngẫu nhiên i bằng 0. Giả thuyết H0 cho rằng phương sai các sai số ngẫu nhiên i bằng 0 chọn phương pháp chạy mô hình OLS. Giả thuyết H0 bị bác bỏ thì ước lựợng tác động cố định là phù hợp hơn so với phương pháp chạy mô hình hệ số không thay đổi OLS.
Nếu P_value < 0.05, thì bác bỏ giả thiết H0 hay có thể chọn phương pháp chạy mô hình hệ số tác động ngẫu nhiên. Ngược lại, phù hợp với phương pháp chạy mô hình OLS.
57
Phương pháp bình phương tối thiểu tổng quát (Generallzed Least Square_GLS)
Phương pháp GLS là phương pháp OLS đối với các biến số đã biến đổi để thỏa mãn các giả thuyết bình phương tối thiểu tiêu chuẩn. Phương pháp này được sử dụng để khắc phục hiện tượng phương sai thay đổi và sự tương quan trong mô hình nghiên cứu. Tuy nhiên, phương pháp GLS sẽ không khắc phục hiện tượng biến bị nội sinh (endogeneity).
Mô hình ước lượng GMM
Ước lượng GMM của Arellano-Bond (1991) dựa trên cơ sở được đề xuất bởi Holtx-Eakin, Newey &Rosen (1988). Thực hiện ước lượng GMM cần phân biệt được biến được công cụ (instrumented) và biến công cụ (instrument). Nếu các biến được dự đoán là nội sinh thì sắp xếp vào nhóm biến được công cụ theo tiếp cận GMM; và khi đó chỉ có giá trị trễ của các biến này mới là các công cụ thích hợp (Judson và các cộng sự, 1996). Còn nếu như các biến giải thích được xác định là ngoại sinh nghiêm ngặt cũng như các biến công cụ được thêm vào (nếu có) thì xếp vào nhóm biến công cụ (iv-instrument variable). Các biến được cho là ngoại sinh nghiêm ngặt thì giá trị hiện tại và trễ của chúng đều là các công cụ thích hợp (Judson và các cộng sự, 1996).
Tính hợp lý của các công cụ được sử dụng trong phương pháp GMM được đánh giá qua các thống kê Hansen/Sargan và Arellano-Bond (AR): kiểm định Hansen/Sargan xác định tính chất phù hợp của các biến công cụ trong mô hình GMM. Đây là kiểm định giới hạn về nội sinh (over-identifying restrictions) của mô hình. Kiểm định Hansen/Sargan với giả thuyết H0 biến công cụ là ngoại sinh, nghĩa là không tương quan với sai số của mô hình. Vì thế, giá trị p của thống kê Sargan càng lớn tốt. Còn kiểm định Arellano-Bond về tự tương quan (autocorrelation) có giả thuyết H0: không tự tương quan, trong đó kiểm định AR (2) quan trọng hơn bởi vì nó kiểm tra tự tương quan ở các cấp độ.