Vận dụng kỹ thuật ghép hình (Jigsaw) trong dạy học hợp tác Hình học 10

Một phần của tài liệu LUẬN VĂN THẠC SĨ KHOA HỌC GIÁO DỤC: PHÁT HUY TÍNH TÍCH CỰC HỌC TẬP CỦA HỌC SINH TRONG DẠY HỌC HỢP TÁC HÌNH HỌC 10 (Trang 34 - 37)

MỘT SỐ BIỆN PHÁP NHẰM PHÁT HUY TÍNH TÍCH CỰC HỌC TẬP CỦA HS

2.2.1. Vận dụng kỹ thuật ghép hình (Jigsaw) trong dạy học hợp tác Hình học 10

a. Cơ sở của biện pháp: Ghép hình (Jigsaw) là kỹ thuật dạy học hợp tác quan trọng được thiết kế bởi Elliot Aronson và các đồng nghiệp.

b. Cách thức tiến hành: Theo kĩ thuật này thì ta tiến hành các HĐ như sau:

− Chia lớp thành các nhóm có số thành viên như nhau (4- 6 người).

Các nhóm này gọi là nhóm hợp tác. Trong mỗi nhóm, các thành viên được đánh số.

− Mỗi thành viên được giao một phần nội dung bài học.

− Thành viên số 1 của tất cả các nhóm được giao tìm hiểu kĩ một phần nội dung như nhau.

− Thành viên số 2, 3, 4... còn lại của tất cả các nhóm được giao các nội dung khác, các thành viên có cùng số được giao nhiệm vụ như nhau.

− Các thành viên của nhóm nghiên cứu cá nhân chuẩn bị phần nội dung của mình.

− Các thành viên các nhóm cùng chủ đề thảo luận với nhau trong khoảng thời gian xác định và trở thành nhóm chuyên gia của nội dung đó.

− Các thành viên của nhóm chuyên gia trở về nhóm hợp tác của mình và giảng lại cho cả nhóm nghe phần nội dung của mình. Các thành viên trình bày lần lượt cho hết nội dung bài học.

− GV tổ chức kiểm tra đánh giá sự nắm vững nội dung kiến thức trong cả bài học cho từng cá nhân (cả lớp làm bài kiểm tra).

* Sơ đồ kĩ thuật ghép hình Bước 1: Lập nhóm hợp tác

Nhóm A Nhóm B Nhóm C Nhóm D Nhiệm vụ

HS A1 HS B1 HS C1 HS D1 Phần 1

HS A2 HS B2 HS C2 HS D2 Phần 2

HS A3 HS B3 HS C3 HS D3 Phần 3

HS A4 HS B4 HS C4 HS D4 Phần 4

Bước 2: Lập nhóm chuyên gia Nhóm 1

Phụ trách phần 1

Nhóm2 Phụ trách phần2

Nhóm 3 Phụ trách phần 3

Nhóm 4 Phụ trách phần 4

HS A1 HS A2 HS A3 HS A4

HS B1 HS B2 HS B3 HS B4

HS C1 HS C2 HS C3 HS C4

HS D1 HS D2 HS D3 HS D4

Bước 3: HS quay lại nhóm hợp tác và giảng cho các bạn nghe phần bài của mình.

c. Ví dụ minh họa

Ví dụ 2.1: Dạy học bài tích của vectơ với một số Bước 1. Lập nhóm học tập hợp tác

Bước 2. Lập nhóm chuyên gia và giao nhiệm vụ cho nhóm chuyên gia Nhóm chuyên gia 1. Tích của một số với một vectơ (Định nghĩa và tính chất) Thực hiện yêu cầu của GV:

- Với vectơ và số 2. Hãy vẽ vectơ với các đặc điểm: cùng phương với vectơ , cùng hướng với vectơ , có độ dài bằng 2 lần độ dài vectơ

- Cho số và vectơ . Hãy vẽ vectơ với các đặc điểm sau:

cùng phương với vectơ , ngược hướng với vectơ , có độ dài bằng độ dài vectơ .

- Vậy nếu cho vectơ và viết = thì vectơ , vectơ có đặc điểm gì?

- Làm việc với sách giáo khoa, giải quyết HĐ 1, HĐ 2.

- Giải thích ví dụ 1 trong sách giáo khoa và các tính chất của tích của một số với một vectơ.

Nhóm chuyên gia 2. Trung điểm của đoạn thẳng và trọng tâm của tam giác - GV gợi động cơ: Cho M là trọng tâm tam giác ABC thì

. Vậy nếu điểm M là điểm bất kì thì tổng

- Em hãy chứng minh với I là trung điểm của AB thì với ∀điểm M ta có:

. - Yêu cầu HS dự đoán:

I là trung điểm của AB G là trọng tâm tam giác ABC

Với ∀điểm M ta có:

.

Với ∀điểm M ta có tính chất tương tự nào?

- Hãy chứng minh dự đoán của em.

Bước 3. Thảo luận theo nhóm học tập hợp tác Ví dụ 2.2: Dạy bài phương trình đường thẳng Bước 1. Lập nhóm học tập hợp tác

Bước 2. Lập nhóm chuyên gia và giao nhiệm vụ cho nhóm chuyên gia Nhóm chuyên gia 1.Vectơ chỉ phương và phương trình tham số của đường thẳng

− Nghiên cứu sách giáo khoa.

− Thực hiện các HĐ 1, HĐ 2, HĐ 3 SGK.

− Thực hiện yêu cầu của GV: Viết phương trình tham số của đường thẳng trong mỗi trường hợp sau

a) Đường thẳng đi qua điểm M(1; 4) và có vectơ chỉ phương .

b) Đường thẳng đi qua điểm N(1;3) và vuông góc với đường thẳng có phương trình 2x 5y+4=0.

c) Đường thẳng đi qua hai điểm A(1;5), B( 2;9).

Nhóm chuyên gia 2. Vectơ pháp tuyến và phương trình tổng quát của đường thẳng

− Nghiên cứu sách giáo khoa.

− Thực hiện các HĐ 4, HĐ 5, HĐ 6, HĐ 7 SGK.

− Thực hiện yêu cầu của GV:

a) Viết phương trình tổng quát của đường thẳng ∆ đi qua điểm M(2; 5) và có vec tơ pháp tuyến (5; ).

b) Viết phương trình tổng quát của đường thẳng ∆ đi qua điểm M(2; 4) và song song với đường thẳng d: x

c) Cho hai điểm P(4; 0), Q(0; . Viết phương trình tổng quát của đường thẳng đi qua hai điểm P, Q và phương trình đường trung trực của đoạn thẳng PQ.

d) Bước 3. Thảo luận theo nhóm học tập hợp tác

2.2.2. Vận dụng kỹ thuật bể cá trong dạy học hợp tác Hình học 10

Một phần của tài liệu LUẬN VĂN THẠC SĨ KHOA HỌC GIÁO DỤC: PHÁT HUY TÍNH TÍCH CỰC HỌC TẬP CỦA HỌC SINH TRONG DẠY HỌC HỢP TÁC HÌNH HỌC 10 (Trang 34 - 37)

Tải bản đầy đủ (DOC)

(92 trang)
w