Cơ sở động học của sự cháy

Một phần của tài liệu Giáo trình nhiên liệu dầu khí (Trang 78 - 83)

5.2 Nhiệt động học và động học của sự cháy

5.2.2 Cơ sở động học của sự cháy

Phản ứng tổng cộng về sự cháy (1a) hay (1b) đã được trình bày ở trên, thực tế chỉ cho ta một cân bằng vật chất và năng lượng mà khơng phản ánh cơ chế thực của sự cháy. Ví dụ, sự cháy của propan bằng oxi không thể thực hiện được chỉ qua một va chạm duy nhất như đã được đưa ra trong phương trình (1) bởi vì như vậy sự cháy bao gồm va chạm tức thời của 6 phân tử, 1 phân tử propan và 5 phân tử oxi, mà xác xuất này vô cùng bé.

Thành bình

X Chất bền vững (6)

Trong thực tế, phản ứng tổng cộng được thực hiện bởi một dãy liên tục các phản ứng đơn giản hơn, được gọi là phản ứng cơ bản. Chúng chỉ tham gia vào phản ứng từ 2 đến 3 phần tử. Trong trường hợp của sự cháy, những phần tử này có thể là những phần tử hay gốc tự do đóng vai trò chủ yếu.

Gốc tự do là một nguyên tử hay một nhóm các nguyên tử có một hay nhiều electron hố trị khơng cặp đơi như nhóm CH3. Để sơ đồ hoá các bước cơ bản của sự cháy, ta sử dụng các kí hiệu rất chung: nhiên liệu được kí hiệu là A, chất gây cháy là B, các gốc tự do là X, Y, ...

Nếu gọi sản phẩm cháy là C, D thì phản ứng tổng cộng của sự cháy là:

A + B → C + D (1c)

Trong thực tế, phản ứng này xảy ra một cách liên tục trong đó ít nhất gồm hai bước cơ bản tạo nên các gốc tự do và các bước này được gọi là các bước phát triển mạch phản ứng:

A + X → C + Y (3)

B + Y → D + X (4)

Lúc kết thúc hai bước này, một phân tử nhiên liệu đã bị chuyển hoá thành các sản phẩm cháy, đồng thời gốc ban đầu X được tái sinh, sao cho các bước trung gian (3) và (4) có thể xảy ra liên tục đến vơ cùng, hình thành một mạch phản ứng mà hai bước (3) và (4) tạo nên mắt xích. Người ta cịn nói rằng hai phản ứng này là những giai đoạn phát triển phản ứng dây chuyền. Chỉ một gốc (X hay Y) lúc ban đầu có trong hỗn hợp các chất phản ứng có thể chuyển hố tất cả các phân tử của nhiên liệu thành các sản phẩm cháy. Trong thực tế, người ta cũng phải kể đến một phần các gốc tự do bị biến mất (do đứt mạch dây chuyền) và mặt khác chúng cũng được sinh ra (sự phân nhánh mạch dây chuyền). Sự đứt mạch dây chuyền xảy ra khi hai gốc va chạm nhau và hai electron tự do ghép với nhau hình thành liên kết cộng hoá trị. Như vậy đặc trưng gốc bị biến mất với việc sinh ra các loại hợp chất hố học bền vững. Năng lượng giải phóng ra trong quá trình liên kết này bị hấp thụ bởi 1 phần tử thứ ba nào đó M mà sự có mặt của nó là cần thiết khi các gốc tự do khơng có thành phần nguyên tử đủ phức tạp:

X + Y (+M) → chất bền vững (+M) (5)

Sự đứt mạch cũng có thể xảy ra khi một gốc chạm vào thành bình. Thật vậy, đại đa số các thành bình là các bề mặt kim loại có các electron hóa trị khơng cặp đơi, bởi vậy chúng tác động như những bẫy các gốc hay các gốc này bị giữ lại trên bề mặt thành kim loại trong một thời gian đủ dài để các gốc khác đến kết hợp với chúng:

Sự biến mất các gốc tự do do đứt mạch dây chuyền trong pha khí hay trên thành bình được đền bù bởi các phản ứng sinh ra những gốc tự do mới (phản ứng phân nhánh), ta có thể sơ đồ hố như sau:

A + Y → 3X (7)

Mỗi gốc được tạo nên sự khơi mào một mạch mới theo các bước (3) và (4): người ta nói rằng mạch bị phân nhánh. Khi kết quả sự phân nhánh đó đủ cao, thì sự phân nhánh có

dạng của một “núi lở” thật sự. Số các mạch tăng ngày càng nhanh và sự tăng liên tục tốc độ dẫn tới sự tăng vơ cùng các phản ứng (hình 14).

Để hiểu rõ hơn hiện tượng phân nhánh của phản ứng ta nghiên cứu sự phụ thuộc của tốc độ phản ứng của các bước cơ bản theo nhiệt độ và nồng độ các gốc tự do.

X + A Y + B X + A X + A C D C X + A C Đứt mạch X + A Y + B C D + ChÊt bỊn v÷ng X X + A C X + A Y + A C X... X... X... X + A Y + B C D X... X + A Y + B C D X... X + A Hình 14.

Sơ đồ phát triển của một phản ứng cháy theo cơ chế dây chuyền phân nhánh (A: nhiên liệu, B chất gây cháy, C và D sản phẩm cháy, X và Y các gốc tự do)

Ta gọi nồng độ của một chất hoá học i đã cho là Xi (phần mol). Như vậy tốc độ phản ứng được định nghĩa là sự thay đổi phần mol của một chất hoá học theo thời gian. Tốc độ của phản ứng phát triển mạch (3) có thể viết như sau:

VP = dXA

dt

− = dXC

dt (8)

Tốc độ này tỉ lệ với tần số va chạm lưỡng phân tử tính cho 1 phân tử Z2 (Z2 là tỉ số của tốc độ tịnh tiến trung bình (C) của một phân tử và đường đi tự do trung bình của nó, λ).

Z2 = C λ = 1/ 2 o 1/ 2 o o (8R) T P ( TM) Pπ λ trong đó: - R là hằng số khí,

- M là khối lượng phân tử trung bình của phân tử ở nhiệt độ To và áp suất Po nhân với tích của các xác suất sau đây:

a) Xác xuất va chạm giữa 2 phần tử thích hợp nghĩa là giữa một phân tử A và một gốc X và xác suất này là XA.XX.

b) Xác suất định hướng va chạm thích hợp để xảy ra phản ứng. Xác suất này được biểu thị bằng thừa số định hướng f ≤ 1 (trong các phần sau ta luôn luôn cho rằng yếu tố lập thể này bằng 1).

c) Xác suất va chạm của 2 phân tử đủ năng lượng để sinh ra phản ứng cơ bản (3) (nếu không, va chạm giữa 2 phân tử chỉ là va chạm đàn hồi). Năng lượng tối thiếu được gọi là năng lượng hoạt hoá và giá trị của nó phụ thuộc vào kiểu phản ứng đang nghiên cứu. Đối với những phản ứng mà các gốc tự do tham gia vào như là phân tử thứ hai trong va chạm thì năng lượng hoạt hố địi hỏi không cao lắm.

suất va chạm giữa 2 tiểu phân có năng lượng tối thiểu này hay năng lượng hoạt hoá (E) được biểu diễn bằng biểu thức e−E/RT.

Như vậy, ta có thể biểu diễn tốc độ phản ứng (3) như sau: VP = f3 . Z2 . XA . XX . e−E p/ RT (9)

Cũng tương tự, đối với các phản ứng cơ bản khác, tốc độ của chúng cũng được biểu thị theo phương trình sau:

- Giai đoạn phát triển mạch (4):

VP’ = f4 . Z2 . XB . XY . e−E p’/RT (10) - Giai đoạn đứt mạch trong pha đồng thể:

Vt = f5 . Z3 . XX . XY . e−E t /RT (11)

Đối với tất cả các bước cơ bản kiểu (5), năng lượng hoạt hóa Et nói chung là bằng 0, mặt khác Z3 là tần số va chạm bậc 3 và giá trị của nó nhỏ hơn khoảng 1000 lần giá trị Z2, tần số va chạm bậc 2:

Z3 ≈ 10−3 Z2 - Giai đoạn đứt mạch do va chạm vào thành bình:

Vt’ = f6 . ZS . XX (hay Y) . e−E t‘/RT (12) (ZS là tần số va chạm vào thành bình)

- Bước 7 phân nhánh phản ứng:

Vr = f7 . Z2 . XA . XY . e−E r /RT (13)

Theo cách viết chung nhất thì tốc độ phản ứng ở bước (3) có thể viết như sau: VP = k3 [A] [X] = k30 [A] [ X] . e−E p/ RT (9’)

Việc lựa chọn các đơn vị nồng đồ [A] và [X] sẽ phụ thuộc vào đơn vị của hằng số tốc độ phản ứng k3. So sánh phương trình (9) và (9’) ta thấy:

k3 = f3 . Z2 . e−E p/ RT k30 = f3 . Z2

Trong các hệ thức trên, tốc độ phản ứng có thứ nguyên là nghịch đảo của thời gian vì rằng ta biểu thị nồng độ các chất tham gia phản ứng là phần mol.

Khi tốc độ của hai bước truyền phản ứng VP và VP’ bằng nhau ta có hệ tĩnh. Vì chính các bước này là các bước quyết định sự chuyển hoá các chất tham gia phản ứng ban đầu thành sản phẩm cháy, nên tốc độ phản ứng tổng cộng (1) sẽ bằng các tốc độ truyền: Vcháy = VP = VP’. Điều này chứng minh rõ ràng rằng tốc độ tổng cộng của sự cháy (sự oxi hoá) phải chịu một sự tăng tốc khi nhiệt độ tăng lên hay khi nồng độ của các gốc tự do tăng lên.

Mặt khác, sự oxi hoá là một phản ứng phát nhiệt và nếu như khơng có sự trao đổi với bên ngồi thì nhiệt độ tăng lên một cách tự động trong quá trình cháy. Hơn nữa, như ta thấy từ phương trình (13), tốc độ phân nhánh tăng lên bởi sự tăng nhiệt độ. Ngược lại, các phản ứng đứt mạch thực tế không bị ảnh hưởng (phương trình 11) (do giả thuyết rằng năng lượng hoạt hố đứt mạch bằng 0). Vì thế, nồng độ gốc tự do tăng lên với sự tăng nhiệt độ.

Như vậy, cơ chế chung của sự cháy mà chúng ta vừa mô tả ở trên là rất đơn giản và được sơ đồ hoá rõ ràng. Song trong thực tế, cơ chế thực của sự cháy là phức tạp hơn nhiều.

Một vấn đề phức tạp tương đối thường xuyên gặp phải là sự phân nhánh suy thoái của mạch. Cho đến nay chúng ta đã chấp nhận sự phân nhánh xảy ra khi một va chạm có đủ năng lượng giữa một trong các chất tham gia phản ứng và một gốc tự do. Trong thực tế đó là một sản phẩm trung gian của sự cháy (ví dụ, một anđehit - một phần tử của nhiên liệu đã bị oxi hố khơng hồn toàn) phản ứng với một phân tử hay một gốc tự do khác gây nên sự phân nhánh của mạch dây chuyền làm xuất hiện hai hay ba gốc tự do. Về mặt động học, điều này tạo nên một sự thay đổi quan trọng: tốc độ phân nhánh sẽ phụ thuộc vào nồng độ của sản phẩm trung gian này. Vì sản phẩm trung gian được sinh ra từ bước truyền phản ứng, nên tốc độ phân nhánh cũng phụ thuộc vào tốc độ truyền. Một cơ chế phân nhánh gián tiếp như thế hay gặp trong đại đa số các phản ứng cháy của các hiđrocacbon.

Ví dụ, chúng ta nghiên cứu phản ứng cháy của metan. Phản ứng tổng cộng hợp thức được viết là:

CH4 + 2O2 → CO2 + 2H2O + 191.760 cal

Cơ chế mạch gồm hai bước cơ bản như sau: - Sự truyền mạch phản ứng:

•CH3 + O2 → •OH + CH2O

CH4 + •OH → •CH3 + H2O

Fomanđehit (CH2O) sẽ bị chuyển hoá tiếp tục thành CO2 và H2O qua các bước cơ bản dẫn đến tạo thành CO2 và nước.

- Sự phân nhánh gián tiếp:

CH2O + O2 → •CHO + •O-OH

Các bước tiếp theo sẽ chuyển các gốc •CHO và •O-OH thành gốc •OH và gốc •OH này lại tham gia vào sự truyền mạch đầu tiên của oxi hoá metan.

Việc nghiên cứu động học của các cơ chế cháy rất khó. Trong các phản ứng cháy nhanh, các phương pháp cổ điển thường không áp dụng được do tốc độ của chúng và sự phát nhiệt của chúng rất cao. Việc nghiên cứu trực tiếp phản ứng cháy chỉ có thể trong rất ít trường hợp nhờ các kĩ thuật phân tích rất hiện đại và rất nhạy.

Ví dụ, khi tồn tại những gradient nồng độ trong không gian phản ứng trong các ngọn lửa thì người ta có thể theo dõi sự tiến triển của 1 loại chất hoá học theo thời gian bằng cách lấy mẫu theo khoảng cách. Nhưng trong trường hợp tự bốc cháy, trong tất cả thể tích mà ở đó khơng tồn tại các gradient nồng độ, như vậy phản ứng xảy ra một cách đồng nhất trong tồn bộ thể tích và hồn thành chỉ trong một phần của giây thì chỉ có thể dùng một phương pháp phân tích cho phép lấy mẫu với tần số rất cao để nghiên cứu trực tiếp tốc độ phản ứng. Trong đại đa số các trường hợp, động học của sự cháy được nghiên cứu bằng các phương pháp gián tiếp để xác định các thông số động học của các phản ứng cháy. Trong việc nghiên cứu này, việc biết các năng lượng hoạt hoá của các bước trung gian có một tầm quan trọng lớn. Bảng 32 trình bày một số giá trị năng lượng hoạt hóa đại diện cho các bước trung gian thường gặp phải trong các phản ứng cháy.

Bảng 32.

Năng lượng hoạt hoá của một số bước trung gian truyền phản ứng và phân nhánh

Bước trung gian Năng lượng hoạt hố (kcal/mol) Các phản ứng truyền mạch •OH + H2 → H2O + ãH T 6 ữ 10 ãOH + CO → CO2 + •H Từ 4 ữ 7,7 ãO-OH + H2 H2O2 + •H 24 •CH3 + O2 → CH2O + •OH 20 CH4 + •OH → •CH3 + H2O 9 Các phản ứng phân nhánh •H + O2 → ãOH + ãO T 15 ữ 18 H2O2 → 2• OH 45

CH2O + O2 → •COH + •O-OH 35

Đây là năng lượng hoạt hố quyết định sự thay đổi tốc độ của các bước cơ bản tùy thuộc vào nhiệt độ và nó cho phép xác định cơ chế tổng quát của sự cháy. Trên bảng 32, ta thấy rằng năng lượng hoạt hoá của các bước phân nhánh, nói chung là cao hơn năng lượng của các bước truyền mạch. Bởi vậy, khi nhiệt độ tăng lên, thì tần số phân nhánh tăng lên nhanh hơn tần số truyền mạch. Tương tự như vậy, một phản ứng phân nhánh được đặc trưng bằng năng lượng hoạt hố lớn sẽ có tần số thấp ở nhiệt độ thấp. Nhưng khi nhiệt độ tăng lên thì dẫn tới sự phân nhánh với năng lượng hoạt hố thấp hơn. Điều này giải thích rằng cơ chế sự cháy có thể bị thay đổi hồn tồn khi ta chuyển từ vùng nhiệt độ này sang vùng nhiệt độ khác.

Một phần của tài liệu Giáo trình nhiên liệu dầu khí (Trang 78 - 83)

Tải bản đầy đủ (PDF)

(120 trang)