Giả
thuyết Phát biểu giả thuyết
Giá trị P
Kết quả kiểm định
H1 Thái độ có tác động tích cực (+) đến ý định ni con
hồn tồn bằng sữa mẹ trong sáu tháng đầu. P<0,05 Chấp nhận H2 Chuẩn chủ quan có tác động tích cực (+) đến ý định
ni con hồn tồn bằng sữa mẹ trong sáu tháng đầu. P<0,05 Chấp nhận H3
Nhận thức kiểm soát hành vi có tác động tích cực (+) đến ý định ni con hồn tồn bằng sữa mẹ trong sáu tháng đầu.
P>0,05 Bác bỏ
H4
Cho con bú tự hiệu quả có tác động tích cực (+) đến ý định ni con hồn tồn bằng sữa mẹ trong sáu tháng đầu.
P<0,05 Chấp nhận
H5
Kiến thức ni con bằng sữa mẹ có tác động tích cực (+) đến ý định ni con hồn tồn bằng sữa mẹ trong sáu tháng đầu.
P<0,05 Chấp nhận
(Nguồn: Kết quả phân tích dữ liệu khảo sát của tác giả) 4.4.2.3. Dị tìm sự vi phạm các giả định cần thiết trong hồi quy tuyến tính
Kiểm định giả định liên hệ tuyến tính: Phương pháp được sử dụng là đồ thị Scatterplot với giá trị phần dư chuẩn hóa (Standardized Residual) trên trục tung và giá trị dự đốn chuẩn hóa (Standardized Predicted Value) trên trục hồnh. Nếu giả định liên hệ tuyến tính và phương sai bằng nhau được thỏa mãn, thì chúng ta sẽ khơng nhận thấy có liên hệ gì giữa các giá trị dự đốn và phần dư, chúng sẽ phân tán rất ngẫu nhiên (Hoàng Trọng và Chu Nguyễn Mộng Ngọc, 2008).
Quan sát Hình 4.1, ta thấy các phần dư phân tán ngẫu nhiên chứ khơng tạo thành một hình dạng nào. Điều này có nghĩa là giả định liên hệ tuyến tính khơng bị vi phạm.
Hình 4.1: Đồ thị phân tán Scatterplot
(Nguồn: Kết quả phân tích dữ liệu khảo sát của tác giả)
Kiểm định giả định về phân phối chuẩn của phần dư: Phần dư có thể khơng tn theo phân phối chuẩn vì những lý do như: sử dụng sai mơ hình, phương sai không phải là hằng số, số lượng các phần dư không đủ nhiều để phân tích (Hồng Trọng và Chu Nguyễn Mộng Ngọc, 2008). Chúng ta sẽ sử dụng các biểu đồ tần số (Histogram, P-P plot) của các phần dư (đã được chuẩn hóa) để kiểm tra giả định này.
Kết quả biểu đồ tần số Histogram của phần dư được thể hiện trong Hình 4.2 cho thấy phân phối phần dư xấp xỉ chuẩn (trung bình Mean = -1,17E-15 gần bằng 0 và độ lệch chuẩn Std. Dev. = 0,991 tức là gần bằng 1). Điều này có nghĩa là giả định về phân phối chuẩn của phần dư không bị vi phạm.
Hình 4.2: Đồ thị tần số Histogram
(Nguồn: Kết quả phân tích dữ liệu khảo sát của tác giả)
Kết quả biểu đồ tần số P-P plot được thể hiện trong Hình 4.3 cho thấy các điểm quan sát không phân tán quá xa đường thẳng kỳ vọng, nên ta có thể kết luận là giả định về phân phối chuẩn của phần dư khơng bị vi phạm.
Hình 4.3: Đồ thị tần số P-P plot
Kiểm tra giả định về tính độc lập của sai số (khơng có tương quan giữa các phần dư): Ta dùng đại lượng thống kê Durbin-Watson (d) để kiểm định tương
quan của các sai số kề nhau (tương qua chuỗi bậc nhất). Giả thuyết khi tiến hành kiểm định này là:
H0: hệ số tương quan tổng thể của các phần dư = 0
Đại lượng d có giá trị biến thiên trong khoảng từ 0 đến 4. Nếu các phần dư khơng có tương quan chuỗi bậc nhất với nhau, giá trị d sẽ gần bằng 2 (Hoàng Trọng và Chu Nguyễn Mộng Ngọc, 2008). Theo kết quả từ Bảng 4.12, giá trị d = 1,940 < 2 có nghĩa là giá trị d tính được rơi vào miền chấp nhận giả thuyết khơng có tương quan chuỗi bậc nhất. Như vậy, ta có thể kết luận là khơng có tương quan giữa các phần dư.
Kiểm tra giả định khơng có mối tương quan giữa các biến độc lập (đo lường đa cộng tuyến): Cộng tuyến là trạng thái trong đó các biến độc lập có tương
quan chặt chẽ với nhau (Hoàng Trọng và Chu Nguyễn Mộng Ngọc, 2008). Các cơng cụ chuẩn đốn giúp chúng ta phát hiện sự tồn tại của cộng tuyến trong dữ liệu và đánh giá mức độ cộng tuyến làm thối hóa các tham số được ước lượng là: Độ chấp nhận của biến (Tolerance), hệ số phóng đại phương sai (Variance Inflation Factor – VIF). Nếu độ chấp nhận của một biến nhỏ, thì nó gần như là một kết hợp tuyến tính của các biến độc lập khá, và đó là dấu hiệu của đa cộng tuyến. Hệ số phóng đại phương sai VIF lớn, quy tắc là khi VIF vượt quá 10, đó là dấu hiệu của đa cơng tuyến (Hồng Trọng và Chu Nguyễn Mộng Ngọc, 2008).
Theo kết quả từ Bảng 4.14 cho thấy, các hệ số phóng đại phương sai VIF của các biến độc lập khá nhỏ, cao nhất là 2,428 < 3, trong khi đó hệ số VIF của một biến độc lập > 10 mới được xem là có hiện tượng đa cộng tuyến. Do đó, ta có thể bác bỏ giả thuyết mơ hình đa cộng tuyến. Điều này có nghĩa là khơng có mối tương quan giữa các biến độc lập hoặc khơng có hiện tượng đa cộng tuyến.
Như vậy, mơ hình hồi quy bội được xây dựng khơng vi phạm các giả định cần thiết trong hồi quy tuyến tính.
4.5. Kiểm định sự khác biệt về ý định ni con hồn tồn bằng sữa mẹ trong sáu tháng đầu của bà mẹ mang thai tại TP. HCM theo các đặc điểm cá nhân sáu tháng đầu của bà mẹ mang thai tại TP. HCM theo các đặc điểm cá nhân của bà mẹ
Sau khi thực hiện phân tích hồi quy bội, tác giả tiến hành kiểm định sự khác biệt về ý định ni con hồn toàn bằng sữa mẹ trong sáu tháng đầu của bà mẹ mang thai tại TP. HCM để khám phá dữ liệu theo các biến định tính: độ tuổi, tình trạng hơn nhân, trình độ học vấn, nghề nghiệp và thu nhập hộ gia đình.
4.5.1. Kiểm định sự khác biệt theo độ tuổi
Để đánh giá sự khác biệt giữa các nhóm bà mẹ phân theo độ tuổi, tác giả tiến hành phân tích phương sai ANOVA với mức ý nghĩa α = 0,05 (tức là độ tin cậy 95%), tác giả thu được kết quả như sau: